本題已加入知乎圓桌 ?科研有點難?www.zhihu.com更多研究生和科研人關心的話題,歡迎關注。
本題已加入知乎圓桌 ?
更多研究生和科研人關心的話題,歡迎關注。
需要的,畢竟學術圈也是一個圈子。前兩天偶然獲得數學家 Rota 的兩篇小短文,講述了混跡數學界的一些經驗,並給予了一些忠告。在此發給大家,希望對大家有一定的啟發作用。
義大利裔的美籍數學家 Gian-Carlo Rota(1932 年 4 月 27 日 – 1999 年 4 月 18 日)是一位傑出的組合學家。他曾是研究泛函分析(Functional Analysis)出身,後來由於個人興趣的轉移,成為了一位研究組合數學(Combinatorial Mathematics)的學者。Rota 的職業生涯大部分都在麻省理工學院(MIT)度過,曾擔任 MIT 的數學教授與哲學教授。
從數學家族譜(Mathematics Genealogy Project)上面可以看到:Gian-Carlo Rota 的導師是 Jacob T. Schwartz,Rota 於 1956 年在耶魯大學獲得數學博士學位,其博士論文的題目是 Extension Theory of Differential Operators。
在 1997 年,Rota 發表了兩篇關於人生經驗和忠告的文章,分別是 「Ten Lessons I wish I Had Been Taught」 和 「Ten Lessons for the Survival of a Mathematics Department「。下面就來逐一分享這兩篇文章中的一些觀點。
每次講座或者分享的時候都有幾個需要注意的事情。
(a)每次講座都應該只有一個重點。(Every lecture should make only one main point.)
Every lecture should state one main point and repeat it over and over, like a theme with variations. An audience is like a herd of cows, moving slowly in the direction they are being driven towards. If we make one point, we have a good chance that the audience will take the right direction; if we make several points, then the cows will scatter all over the field. The audience will lose interest and everyone will go back to the thoughts they interrupted in order to come to our lecture.
(b)不要超時。(Never run overtime.)
Running overtime is the one unforgivable error a lecturer can make. After fifty minutes (one micro-century as von Neumann used to say) everybody』s attention will turn elsewhere even if we are trying to prove the Riemann hypothesis. One minute overtime can destroy the best of lectures.
(c)提及聽眾的成果。(Relate to your audience.)
As you enter the lecture hall, try to spot someone in the audience with whose work you have some familiarity. Quickly rearrange your presentation so as to manage to mention some of that person』s work. In this way, you will guarantee that at least one person will follow with rapt attention, and you will make a friend to boot.
Everyone in the audience has come to listen to your lecture with the secret hope of hearing their work mentioned.
(d)給聽眾一些值得回憶的東西。(Give them something to take home.)
Most of the time they admit that they have forgotten the subject of the course and all the mathematics I thought I had taught them. However, they will gladly recall some joke, some anecdote, some quirk, some side remark, or some mistake I made.
(a)開講前保持黑板乾淨(Make sure the blackboard is spotless.)
By starting with a spotless blackboard you will subtly convey the impression that the lecture they are about to hear is equally spotless.
(b)從黑板的左上角開始書寫(Start writing on the top left-hand corner.)
What we write on the blackboard should correspond to what we want an attentive listener to take down in his notebook. It is preferable to write slowly and in a large handwriting, with no abbreviations.
When slides are used instead of the blackboard, the speaker should spend some time explaining each slide, preferably by adding sentences that are inessential, repetitive, or superfluous, so as to allow any member of the audience time to copy our slide. We all fall prey to the illusion that a listener will find the time to read the copy of the slides we hand them after the lecture. This is wishful thinking.
多次公布同樣的結果(Publish the Same Result Several Times)
The mathematical community is split into small groups, each one with its own customs, notation, and terminology. It may soon be indispensable to present the same result in several versions, each one accessible to a specific group; the price one might have to pay otherwise is to have our work rediscovered by someone who uses a different language and notation and who will rightly claim it as his own.
When we think of Hilbert, we think of a few of his great theorems, like his basis theorem. But Hilbert』s name is more often remembered for his work in number theory, his Zahlbericht, his book Foundations of Geometry, and for his text on integral equations.
每個數學家只有少數的招數(Every Mathematician Has Only a Few Tricks)
You admire Erdo?s』s contributions to mathematics as much as I do, and I felt annoyed when the older mathematician flatly and definitively stated that all of Erdo?s』s work could be 「reduced」 to a few tricks which Erdo?s repeatedly relied on in his proofs. What the number theorist did not realize is that other mathematicians, even the very best, also rely on a few tricks which they use over and over. But on reading the proofs of Hilbert』s striking and deep theorems in invariant theory, it was surprising to verify that Hilbert』s proofs relied on the same few tricks. Even Hilbert had only a few tricks!
There are two kinds of mistakes. There are fatal mistakes that destroy a theory, but there are also contingent ones, which are useful in testing the stability of a theory.
使用費曼的方法(Use the Feynman Method)
You have to keep a dozen of your favorite problems constantly present in your mind, although by and large they will lay in a dormant state. Every time you hear or read a new trick or a new result, test it against each of your twelve problems to see whether it helps. Every once in a while there will be a hit, and people will say, 「How did he do it? He must be a genius!」
不要吝嗇你的讚美(Give Lavish Acknowledgments)
I have always felt miffed after reading a paper in which I felt I was not being given proper credit, and it is safe to conjecture that the same happens to everyone else.
If we wish our paper to be read, we had better provide our prospective readers with strong motivation to do so. A lengthy introduction, summarizing the history of the subject, giving everybody his due, and perhaps enticingly outlining the content of the paper in a discursive manner, will go some of the way towards getting us a couple of readers.
You must realize that after reaching a certain age you are no longer viewed as a person. You become an institution, and you are treated the way institutions are treated. You are expected to behave like a piece of period furniture, an architectural landmark, or an incunabulum.
不要在其他系講自己系同事的壞話(Never wash your dirty linen in public)
Departments of a university are like sovereign states: there is no such thing as charity towards one another.
Your letter will be viewed as evidence of disunity in the rank and file of mathematicians. Human nature being what it is, such a dean or provost is likely to remember an unsolicited letter at budget time, and not very kindly at that.
You are not alone in believing that your own field is better and more promising than those of your colleagues. We all believe the same about our own fields. But our beliefs cancel each other out. Better keep your mouth shut rather than make yourself obnoxious. And remember, when talking to outsiders, have nothing but praise for your colleagues in all fields, even for those in combinatorics. All public shows of disunity are ultimately harmful to the well-being of mathematics.
The grocery bill, a computer program, and class field theory are three instances of mathematics. Your opinion that some instances may be better than others is most effectively verbalized when you are asked to vote on a tenure decision. At other times, a careless statement of relative values is more likely to turn potential friends of mathematics into enemies of our field. Believe me, we are going to need all the friends we can get.
Mathematics is the greatest undertaking of mankind. All mathematicians know this. Yet many people do not share this view. Consequently, mathematics is not as self-supporting a profession in our society as the exercise of poetry was in medieval Ireland. Most of our income will have to come from teaching, and the more students we teach, the more of our friends we can appoint to our department. Those few colleagues who are successful at teaching undergraduate courses should earn our thanks as well as our respect. It is counterproductive to turn up our noses at those who bring home the dough.
When I was in graduate school, one of my teachers told me, 「When you write a research paper, you are afraid that your result might already be known; but when you write an expository paper, you discover that nothing is known.」
It is not enough for you (or anyone) to have a good product to sell; you must package it right and advertise it properly. Otherwise you will go out of business.
When an engineer knocks at your door with a mathematical question, you should not try to get rid of him or her as quickly as possible.
What the engineer wants is to be treated with respect and consideration, like the human being he is, and most of all to be listened to with rapt attention. If you do this, he will be likely to hit upon a clever new idea as he explains the problem to you, and you will get some of the credit.
Listening to engineers and other scientists is our duty. You may even learn some interesting new mathematics while doing so.
Grade school teachers, high school teachers, administrators and lobbyists are as much mathematicians as you or Hilbert. It is not up to us to make invidious distinctions. They contribute to the well-being of mathematics as much as or more than you or other mathematicians. They are right in feeling left out by snobbish research mathematicians who do not know on which side their bread is buttered. It is our best interest, as well as the interest of justice, to treat all who deal with mathematics in whatever way as equals. By being united we will increase the probability of our survival.
Flakiness is nowadays creeping into the sciences like a virus through a computer, and it may be the present threat to our civilization. Mathematics can save the world from the invasion of the flakes by unmasking them and by contributing some hard thinking. You and I know that mathematics is not and will never be flaky, by definition.
This is the biggest chance we have had in a long while to make a lasting contribution to the well-being of Science. Let us not botch it as we did with the few other chances we have had in the past.
Let me confess to you something I have told very few others (after all, this message will not get around much): I have written some of the papers I like the most while hiding in a closet. When the going gets rough, we have recourse to a way of salvation that is not available to ordinary mortals: we have that Mighty Fortress that is our Mathematics. This is what makes us mathematicians into very special people. The danger is envy from the rest of the world.
When you meet someone who does not know how to differentiate and integrate, be kind, gentle, understanding. Remember, there are lots of people like that out there, and if we are not careful, they will do away with us, as has happened many times before in history to other Very Special People.
需要。
人脈這個詞聽起來像是逢年過節發個簡訊送個禮,但在學術界建立人脈跟一般概念里的人脈不同。學術圈的Social能力和學術思維,溝通能力,報告能力,科研寫作能力一樣是個正經需要訓練的東西。
導師每次送我們去開會都要強調,聽什麼報告,學了什麼新技術都是細枝末節。paper可以下下來看,報告也可以在油管上聽,重要的可以見到大部分圈內人士。開會的任務包括有沒有提問題?報告結束有沒有跟報告人交談?有沒有跟其他與會者交談?有沒有在一分鐘之內讓人聽懂你的研究?跟多少人見了面?從其他人那裡獲得了多少新東西?受到了多少啟發?有沒有啟發別人?有沒有讓別人記住你?是否成功拓展了自己的圈子?有沒有讓大佬對你的工作留下印象?
Social的訓練和學術訓練的重要性幾乎是持平的。
By the way, 前任導師為了省錢從來不讓我們去開會。
在學術屆生存需要人脈很廣嗎?
首先回答,需要。
其他答案已經回答得很好的。我想補充一些我的理解和認識。
什麼時候需要人脈?
現在學術競爭有些白熱化了,基本上從本科開始下實驗室就算開始在學術屆社交了。而不是說要博士畢業之後,或者博士發表幾篇工作之後。尤其是本科打算申請海外top50名校的學生,暑研現在變得必不可少了。在我求學的那個年代,即十年前,還沒有這麼嚴重。通常,暑研的學校也是他們的保底學校了。
第二,我想說的是做研究和社交不是一個先後關係。就跟事業和戀愛一樣,不必非事業有成了再去找對象,這本身是可以雙管齊下的,相互促進的關係。caltech經常會有social hour,下午四點大家科研累了就出來吐槽,交友。和系裡不同老師的學生、不同系的學生、以及部分年輕老師,都可以交流。這個過程也可能會產生新的idea,新的合作關係。
什麼是人脈?
我覺得人脈沒有那麼複雜,沒人會問我爸是誰,我爺爺是誰,家裡有沒有礦,是更純粹簡單的關係。多和人接觸,表達誠意,再加上一點點實力。當然也有人生來就含著金鑰匙,但這些不是交流的前提和必要條件。
人脈如何建立?
最基本的就是你的師兄弟、同門關係、師承關係、合作關係,比如你導師的導師,你導師的導師的導師,你導師的合作者這些,大概率都會接觸到。所以多去不同實驗室交流(暑研、實習、訪問學生、postdoc、訪問學者),師承不同的導師。這些可以看作是你的基本盤。大家也都喜歡那些經歷比較豐富的學生和老師,會帶來很多新鮮的血液(idea)。
基於基本盤向外擴展,參加會議,尤其是國際會議是最主要的。我的體會是,What you present, no one cares,大家如果對你感興趣會去看你的文章。大部分的時間就是在嘮嗑或者找人嘮嗑的路上。嘮嗑的內容呢無非就是,充分表達對大牛工作的欣賞,了解行業內的動態,和同齡人建立聯繫和尋找可能的合作。
在學術界生存,你需要認識多少人?
作者:李俠,上海交通大學科學史與科學哲學系
任何一個學術人必須盡最大努力積攢學術資本和社會資本,即又要做學問,又要去社交。在學術道路上處於不同階段的人,該怎樣分配做學問和社交的精力才是合理的?一個社會如果出現制度性的社交收益大於學術收益,學術界又會處於何種狀態?
在學術界生活的人同樣需要社會交往,而且社會交往也是一個人積攢資本的重要方式。對於學術界的人而言,他的資本構成包括兩部分,即學術資本與社會資本。學術資本就是一個人經年累月從事研究所積攢下的資本總和,如獲得學位、發表成果、獲得的獎勵等;而社會資本則是指個體與科技共同體成員、社會其他部門之間由於實質性交往而獲得來自他人或機構的支持、認可的那部分資本。任何一個學術人作為理性人,他在工作中必須盡最大努力積攢下兩類資本,並使之最大化,並以此在市場中獲得相應的收益和榮譽。
拋開總資本中的學術資本積累不談,我們想探討一下學術界社會資本獲得的途徑與特點。由於社會資本是由人與人之間形成的一種穩定關係所帶來的,從而社會資本的積累與所交往互動的人的數量有關,從理論上說,你認識的人越多你所擁有的社會資本就越多,道理沒錯,問題是這種推論可行嗎?由於人的精力有限,不可能把所有的時間都用於社會交往上,這就引申出一個很現實的問題:在學術界生存你需要認識多少人?
《生活大爆炸》劇照。圖源:Chad Orzel
學術界中人通常有多少好友
英國牛津大學的人類學家與進化心理學家羅賓?鄧巴(Robin Dunbar,1947-)在1992年發表的一篇文章中曾提出一個著名論斷:人與人之間所能維持的穩定互動關係的規模是150人左右,這個數字被稱作鄧巴數(Dunbars number)。這個結論是鄧巴根據靈長類動物腦的大小與平均社會群體大小之間存在相關性推出來的,後來他從人類社會中的各種現存組織結構入手,證明這個數量規模在社會中具有普遍性。
由於學術界只是社會系統中的一個子集,除了專業分工有別之外,與其他子系統在生活屬性上並沒有多大分別,考慮到人類認知的有限性是一個普遍性現象,因此,學術界與其他領域一樣相互之間可以維持的最大認識規模仍是150人左右。這裡需要對認識進行一些簡單的界定,認識是指相互之間存在實質性的交往互動,而非僅僅知道對方的名字。按鄧巴的形象說法:如果你碰巧在酒吧里碰見他們,加入他們陣營時你不會因為未受邀請而感到尷尬。
在現實生活中,我們的交往規模遠遠沒有這麼大,150人可以認為是一個人在學術界交往規模的上限。那麼真實生活中我們實際交往的人有多少呢?它的結構又是怎樣的?在日常生活中,我們通常根據交往頻率與密度(親疏遠近關係)對所認識的人進行劃分,因此,這150人的群體我們可以劃分為幾個層級結構。關於這一點,鄧巴並沒有給出相應的說明,但不妨根據密切程度把社交群體劃分為三層結構:核心群體、亞核心群體與外圍群體。每個層次的群體人數又該怎樣分配呢?雖然可以簡單地把鄧巴數平均分配,即每個層級的規模為50人,但是現實生活中,大多數人所認識的核心群體成員都是低於50人的。為了驗證一個人所認識的核心群體成員的數量,通過一些實證調研,我們發現,核心群體的規模應該是30人左右,亞核心群體的規模為60人左右,外圍群體的規模約為60人左右,這樣的分布符合實際的人群交往結構,人數總和也符合鄧巴數,而且,基於偏好與親疏結構劃分的三個認識層級的數量規模也與學術界的現狀相一致。
上述分析意味著一個人在學術界所認識的核心成員在30個人以內,稍遠一點的亞群體人數在60人左右,交往比較少的外圍群體的規模以60人為上限。通常一個人在社會交往中的精力主要投向核心群體與亞核心群體,對於外圍群體的精力投入就比較少了。一旦他遇到需要幫助的時候,首先會向所認識的核心群體成員尋求幫助,然後是亞核心群體成員,最後才是外圍群體。這種關係結構也符合美國社會學家彼得·布勞的社會交換理論的要求。
我能直接影響多少人?
還有一個基礎性問題需要解決,即把一個人所認識的群體根據偏好、親疏遠近做劃分是否有道理呢?哈佛大學的社會學教授尼古拉斯·克里斯塔基斯提出的「三度影響力」原則可以支持我們對群體結構的劃分。按照尼古拉斯的說法:我們所做或所說的任何事情,都會在網路上泛起漣漪,影響我們的朋友(一度)、我們朋友的朋友(二度),甚至我們朋友的朋友的朋友(三度)。如果超出三度分隔,我們的影響就逐漸消失。尼古拉斯的「三度」分別對應我們的核心群體、亞核心群體與外圍群體。但是對於網路傳遞過程中的影響力衰減模式,尼古拉斯並沒有給出具體的說明。聯繫到前期的一些觀察,我們給出影響力逐級衰減的比例是減半規則。為了形象地說明這個問題,下面給出個體在群體中影響力衰減的示意圖:
個人維繫的群體結構類型與影響力衰減模式
通過這個圖,可以很好地說明你所認識的群體的結構以及自己的偏好,也與尼古拉斯的三度影響力原則相匹配。一個人的影響力在第三度區隔已經衰減為12.5%,維持一個穩定的150人認識群體,已經接近個體影響力的極限。通過這個影響力衰減模式,我們還可以解釋米爾格拉姆提出的六度分隔理論。這個理論是指任何距離遙遠的兩個陌生人之間,只需要通過六個人的傳遞就可以聯繫上。其實,在這個小世界效應里,從源頭到第六個人影響力按照我們的減半模式已經衰減為1.56%,這足可以看作是陌生人了。基於這種分析,一個在學術界中生活的人,扣除很少關注的外圍群體後,他真實有效的認識的人數規模應該在90-100人以內。筆者最近通過對微信圈好友的調查分析也印證了這個規模。我們選取微信發帖獲得最多點贊數來代表一個人的影響力的最大範圍,統計結果顯示微信朋友圈的平均影響力範圍是84人,這個結論大致印證了最大認識規模在90-100人之間的假設。另外,通過最多評論數來檢測核心成員的規模,結果大約是平均最高點贊數的三分之一,即28人左右。這組數據可以粗略證明我們提出的個體有效認識的人數與結構的猜測。
該花多大精力社交?
維持一個群體的穩定關係是需要花費大量投入的,由於時間和精力的硬性約束,不是認識的人越多越好,隨著認識的人數的快速增加,維護成本也隨之快速上升。按照經濟學的說法,最大的認識人數規模的邊界條件是群體邊際收入等於邊際成本的那一刻,超過這個邊界,再多認識人就不划算了。對於學術界而言,畢竟主業是科研活動,標誌其學術成色的還是其所取得的學術成就和貢獻,而這些業績的取得都是需要投入巨大的時間與精力的,因此,社會資本對於學術界而言只是一種輔助性資本,切不可本末倒置,把社會交往作為共同體成員追求的主要目標。通過實證數據分析,我們發現一個有趣的現象:成就越大者,越容易擴大核心成員的規模,從而增加由影響力帶來的社會資本,並處於影響鏈的上游;反之,成就小者,則處於影響鏈的下游,核心成員規模較小,交往佔用時間即便很多,所增加的社會資本也有限。
燈塔模型圖中符號的意義分別是:ABC的面積就是一個人所積攢的社會資本總量,t線就是影響力線,當個人能力提升的時候,影響力線從t1向 t2上移,覆蓋的面積增大,意味著積攢的社會資本也越多。這張圖很好地揭示了提升個人成就對於影響力提升和社會資本積累的重要意義。另外,區域的社會平均水平線ST0也會影響個體積攢社會資本難易程度。在水平高的地方混出名堂不容易,原因就在於社會平均水平較高的緣故。
由於個人積攢的資本總量=學術資本+社會資本,所以在積攢資本的過程中要避免兩種走極端的路線:要麼完全放棄社會資本,全身心投入學術資本積累;要麼大幅縮減學術資本積累的投入,無限制地加大對社會資本積累的投入,一個理性的資本積累模式應該是合理分配時間與精力資源在兩個領域的投入比例,在學術界生活,學術是主業,這部分投入應該永遠佔大頭。如果學術界出現制度性的社會資本收益大於學術資本收益,那麼這個社會的學術界一定是處於退化狀態,這種趨勢將極大地遏制學術的發展,如跑部錢進、拉關係等都屬此類現象。社會資本的形成應該是一種自生自發秩序的結果,也就是說是順其自然形成的,而非刻意建構,否則會出現社會資本的泡沫現象。
對於社會資本的積累而言,重要的是改變你所認識的人的群體結構,畢竟對於影響力而言,核心成員的數量與質量才是最關鍵的,從核心群體到亞核心群體已經佔用你影響力的75%,這也是形成社會資本的主要區間,再拓展認識的人的規模就會面臨邊際收益遞減的局面。因此,在學術界生存,認識90以內的人足矣!
版權聲明:本文由科技工作者之家—科界App子欄目《返樸》原創,投稿/授權/合作,請聯繫 fanpu2019@outlook.com
非常重要,不管國內國外,也不僅限於學術圈。舉幾個例子。
博士的offer。參加當年北京的博士交流會,認識了荷蘭delft的兩個老師,並且給他們留下了比較好的印象。回去之後把我介紹給了一個教授,可惜那個教授已經在delft退休,於是就把我介紹給了德國的一個研究所,教授也就是我後來博士的老闆。
博後offer。老闆在我申請博士的時候也給了offer,後來去了德國就把這個老闆拒了。學術圈子很小,尤其是我們小眾專業。讀博之後第一次開會遇見他,沒敢上去說話。第二次遇見,和他誠懇的道了歉。他說開始很生氣,不過也理解。後來又在一次會議上遇見過。這樣混了臉熟。在申請博後正式程序開始之前就聯繫他,雙方都比較滿意,所以申請也就是走了個流程。後來給了我兩個職位的機會,我選了其中一個。無奈博後一年就去了工業界,需要尋找下次開會,再次表達歉意……
現在公司的offer。在博三開會時,經老闆介紹認識了現在公司的CTO。後來多次開會遇見,都會閑聊幾句。在博後離職之前聯繫CTO,表達了想進工業界的意願。當時公司要招的是sales manager。和他還有老闆聊過之後,互換好感,然後拿到scientist的offer。
這三件事裡面,沒人問我爸是誰,家裡有沒有礦,是更純粹的關係更簡單的人脈。有備而來,多和人接觸,表達誠意,再加上一點點實力,至少在歐洲學術圈發展人脈並不難。博士相對閉塞,最重要的發展人脈的途徑就是參加會議,尤其是國際會議。自己的或者別人的presentation並沒那麼重要,有的人把這個看得太重,忽視了社交這一開會最有利的屬性。原來開導所里的智利同事,他一演講就緊張: What you present, no one cares。他後來果然就不緊張了。適當的respect開會學術上的內容,其他的時間就去找人嘮嗑吧!
※如何用 R 快速了解科研領域?※產業化系列F之卅一:再這麼玩下去,中國的科研就真沒戲了※郝春文:35年,將敦煌文書推向整個學術界
TAG:科研 | 學術 | 人脈 | 學術界 | 科學 |