太陽系的八大行星之一

水星(英語:Mercury,拉丁語:Mercurius)是太陽系八大行星最內側也是最小的一顆行星,也是離太陽最近的行星。符號為?, 中國稱為辰星,有著八大行星中最大的軌道偏心率。它每87.968個地球日繞行太陽一周,而每公轉2.01周同時也自轉3圈。

水星有著太陽系行星中最小的軌道傾角。水星軌道的近日點每世紀比牛頓力學的預測多出43弧秒(角秒)的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。

水星是一顆類地行星,由於其非常靠近太陽,所以只會出現在凌晨成為晨星,或是黃昏出現作為昏星。除非有日食,否則在陽光的照耀下通常是看不見水星的。

內部構造

水星是太陽系內與地球相似的4顆類地行星之一,有著與地球一樣的岩石個體。它是太陽系中最小的行星,在赤道的半徑是2,439.7公里。水星甚至比一些巨大的天然衛星,比如甘尼米德(木衛三)和泰坦(土衛六)還要小 ——雖然質量較大。水星由大約70%的金屬和30%的硅酸鹽材料組成,水星的密度是5.427克/cm3,在太陽系中是第二高的,僅次於地球的5.515克/cm3。如果不考慮重力壓縮對物質密度的影響,水星物質的密度將

太陽系八大行星及冥王星

是最高的——未經重力壓縮的水星物質密度是5.3克/cm3,相較之下的地球物質只有4.4克/cm3。

從水星的密度可以推測其內部結構的詳細資料。地球的高密度,特別是核心的高密度是由重力壓縮所導致的。水星是如此的小,因此它的內部不會被強力的擠壓。所以它要有如此高的密度,它的核心必然很大且含有許多的鐵。

地形地貌

美國發射的「水手10號」在1974年3月、9月和1975年3月探測了水星,並向地面發回5000多張照片,為我們了解水星提供了珍貴的信息。從照片上我們看出,水星的外貌酷似月球,有許多大小不一的環形山,還有輻射紋、平原、裂谷、盆地等地形。

水星的表面很像月球,滿布著環形山、大平原、盆地、輻射紋和斷崖。1976年,國際天文學聯合會開始為水星上的環形山命名。

水星表面上有著星羅棋布的大大小小的環形山,既有高山,也有平原,還有令人膽寒的懸崖峭壁。據統計,水星上的環形山有上千個,這些環形山比月亮上的環形山的坡度平緩些。

水星上的環形山和月球上的環形山一樣,也進行了命名。在國際天文學聯合會已命名的310多個環形山的名稱中,其中有15個環形山是以我們中華民族的人物的名字命名的。有伯牙:傳說是春秋時代的音樂家;蔡琰:東漢末女詩人;李白:唐代大詩人;白居易:唐代大詩人:董源:五代十國南唐畫家;李清照:南宋女詞人;姜夔:南宋音樂家;梁楷:南宋畫家;關漢卿:元代戲曲家;馬致遠:元代戲曲家;趙孟頫:元代書畫家;王蒙:元末畫家;朱耷:清初畫家;曹沾(即曹雪芹):清代文學家;魯迅:中國現代文學家。

水星表面平均溫度約452K,變化範圍從90-700K,是溫差最大的行星。白天太陽光直射處溫度高達427℃,夜晚太陽照不到時,溫度降低到-173℃。可以比較一下地球,地球上

的度溫變化只有11K(這裡只是太陽輻射能量,不考慮「季節」,「天氣」)。 水星的表面的日照比地球強8.9 倍,總共輻照度有9126.6W/㎡。

令人驚訝地是,在1992年所進行的雷達觀察顯示,水星的北極有冰。一般相信這些冰存在於陽光永無法照射到的環形山底部,由於彗星的撞擊或行星內部的氣體冒出表面而積累的。由於沒有大氣調節,這些地方的溫度一直維持在華氏零下280度(約合-173℃)左右。

水星的表面表現出巨大的急斜面,有些達到幾百千米長,三千米高。有些橫處於環形山的外環處,而另一些急斜面的面貌表明他們是受壓縮而形成的。據估計,水星表面收縮

卡路里盆地

了大約0.1%(或在星球半徑上遞減了大約1千米)!

水星表面受到無數次的隕石撞擊,到處坑窪。當水星受到巨大的撞擊後,就會有盆地形成,周圍則由山脈圍繞。在盆地之外是撞擊噴出的物質,以及平坦的熔岩洪流平原。此外,水星在幾十億年的演變過程中,表面還形成許多褶皺、山脊和裂縫,彼此相互交錯。

水星的環形山很類似月球。水星表面最顯著的的特徵(只包括已經被拍攝過的部分)之一是一個直徑達到1360km的衝擊性環形山:卡路里(Caloris)盆地,是水星上溫度最高的地區。如同月球的盆地,Caloris盆地很有可能形成於太陽系早期的大碰撞中,那次碰撞大概同時造成了星球另一面正對盆地處奇特的地形。水星地形被標記為多起伏的,原因是幾十億年前水星的核心冷卻收縮引起的外殼起皺。大多數的水星表面包括二個不同的年齡層;比較年輕的比較平,或許是因為溶岩浸入了較早地形的結果。除此之外,水星有「顯著性」的「周期性膨脹」。

水星(10張)

在地面上觀測水星,幾乎看不到它的細節。1973年11月3日,美國發射了水手10號宇宙飛船,對水星進行飛近探測。它是人類第一個「訪問」水星的宇宙飛船。在它與水星三次相會的過程中,向地面發回了5000多張照片,為我們了解水星提供了珍貴的信息。在最後一次,它距水星表面僅372千米,拍攝了非常清晰的水星電視圖像。

水星表面大大小小的環形山星羅棋布,既有高山,也有平原,還有令人膽寒的懸崖峭壁。據統計,水星上的環形山有上千個,這些環形山比月亮上的環形山的坡度平緩些。

地質構造

水星是太陽系中密度第二高的行星,僅次於地球。據此,科學家們估計水星內部必定存在一個超大的內核,其內核質量甚至可以佔到其總質量的2/3,而相比之下,地球的內核區質量只佔地球總質量的1/3。美國華盛頓卡內基研究院地磁學系主任,美國信使號水星探測器項目首席科學家西恩·所羅門(Sean Solomon)教授表示:科學界的觀點是認為在太陽系早期的狂暴撞擊時代,水星曾遭遇嚴重撞擊,導致其失去了密度較低的一部分外殼,

水星

因此留下了密度相對較大的部分。而此次信使號探測器的任務中有一項便是通過對水星進行全地表化學成分分析來檢驗這個理論。

水星含鐵的百分率超過任何其他已知的星系行星。這裡有數個的理論被提出來說明水星的高金屬性。

一個理論說本來水星有一個和普通球粒狀隕石相似的金屬—硅酸鹽比率。那時它的質量是我們觀測到質量的大約2.25倍,但在早期太陽系的歷史中的某個時間,一個星子/微星體撞掉了水星的1/6。影響是水星的地殼和地幔失去了。類似的另外一個理論是一個用來解釋地球月亮的形成的,參見巨物影響理論。另一種說,水星可能在所謂太陽星雲早期的造型階段,在太陽爆發出它的能量之前已經穩定。在這個理論中水星那時大約質量是我們觀測到的兩倍;但因為原恆星收縮,水星的溫度到達了大約2500-3500K之間;甚至高達10000K。許多的水星表面的岩石在這種溫度下蒸發,形成"岩石蒸汽",隨後,"岩石蒸汽" 被星際風暴帶走。第三個理論,類似第二個

水星圖解

,認為水星的外殼層是被太陽風長期侵蝕掉了的,

水星外貌如月,內部卻很像地球,也分為殼、幔、核三層。水星的半徑為2439公里,是地球半徑的38.2%,18個水星合併起來才抵得上一個地球的大小。質量為3.33×102?克,為地球質量的5.58%,平均密度為 5.433克/cm3,略低於地球的平均密度。在八大行星中,除地球外,水星的密度最大由此天文學家推測水星的外殼是由硅酸鹽構成的,其中心有個比月球大得多的鐵質內核。這個核球的主要成分是鐵、鎳和硅酸鹽根據這樣的結構,水星應含鐵兩萬億億噸,按世界鋼的年產量(約8億噸)計算,可以開採2400億年。

地殼厚度100-300km[1]

結皮厚度600km

核心半徑約1800km

這個行星有一個相對大的(即使是與地球相比)的鐵質核;水星由大約70% 的金屬和30% 的硅酸鹽組成,以緻密度較高。平均密度是5430kg/m3;略微地小於地球密度,卻比金星大。地球高密度產生的原因是地球的質量壓縮了地球的體積。水星的質量只有地球的5.5%——鐵核佔據了 42% 的行星容積(地核只佔17% )核的周圍是600km 厚的行星幔。水星的總重量約為30 000兆公噸。

平原

水星有兩種地質顯著不同的平原。在坑穴之間,起伏平緩、多丘陵的平原,是水星表面可見最古老的地區,早於猛烈的火山口地形。這些埋藏著隕石坑的平原似乎已湮滅許多較早的隕石坑,並且缺乏直徑在30公里以下,以及更小的隕石坑。還不清楚它們是起源於火山還是撞擊,這些埋藏著隕石坑的平原大致是均勻的分布在整個行星的表面。

平坦的平原是廣泛的平坦區域,布滿了各種大大小小的凹陷,和月球的海非常的相似。值得注意的是,它們廣泛的環繞在卡洛里盆地的周圍。不同於月海,水星平坦的平原和埋藏著隕石坑的古老平原有著相同的反照率。儘管缺乏明確的火山特徵,在地化的平台和圓角、分裂的形狀都強烈的支持這些平原起源於火山。值得注意的是所有水星平坦平原的形成都比卡洛里盆地晚,比較在卡洛里噴發覆蓋物上可察覺的小隕石坑密度可見一斑卡洛里盆地的地板填滿了獨特的平原地質,破碎的山脊和粗略的多邊形碎裂。不清楚是撞擊誘導火山熔岩,還是撞擊造成大片的融化。

行星表面一個不尋常的特徵是眾多的壓縮皺褶或峭壁,在平原表面交錯著。隨著行星內部的冷卻,它可能會略為收縮,並且表面開始變型,造成了這些特徵。凹陷也在其它地形,像是坑穴和平滑的平原,頂部看見,顯示這些皺褶是在如今才形成的。水星的表面也會被太陽扭曲 - 太陽對水星的潮汐力比月球對地球的強17倍 水星密度

水星是太陽系中密度第二高的行星,僅次於地球。據此,科學家們估計水星內部必定存在一個超大的內核,其內核質量甚至可以佔到其總質量的2/3,而相比之下,地球的內核區質量只佔地球總質量的1/3。美國華盛頓卡內基研究院地磁學系主任,美國信使號水星探測器項目首席科學家西恩·所羅門(Sean Solomon)教授表示:目前科學界的觀點是認為在太陽系早期的狂暴撞擊時代,水星曾遭遇嚴重撞擊,導致其失去了密度較低的一部分外殼,因此留下了密度相對較大的部分。而此次信使號探測器的任務中有一項便是通過對水星進行全地表化學成分分析來檢驗這個理論

星體磁場

在太陽系的八大行星中,火星、金星、地球、木星、土星都有磁場,但只有水星是太陽系類地行星中除了地球之外唯一擁有顯著磁場的行星(不過儘管如此,它的磁場強度也僅有地球的1%不到)。對於一顆行星來說,磁場的有無絕非小事,就拿地球磁場來說,它構成了地球上生命的保護傘,幫助抵擋有害的太陽射線和其它宇宙射線,從而造就了生命的樂園。所羅門博士將地球磁場稱作「我們的輻射保護傘」,如果沒有地球磁場,地球上的生命將很難出現和演化。

研究人員相信水星的磁場產生機制和地球的相同,那就是其外核部位導電熔漿的流動形成的「電機」模式。此次信使號探測器將精確測量水星磁場的分布,從而幫助科學家們檢驗這一理論是否正確。

1973年11月,第一個也是到目前為止唯一的水星探測器發射成功,它的既定考察任務中,有一項就是探測水星究竟有沒有磁場。它就是美國的「水手10號」探測器。探測器曾經3次從水星上空飛過,那是在1974年的3月29日和9月21日,以及1975年3月16日。

「水手10號」第一次飛越水星時,距水星只有720多公里。探測器上的照相機在拍攝布滿環形山的水星地貌的同時磁強計意外地探測到水星似乎存在一個很弱的磁場,而且可能是跟地球磁場那樣有著兩個磁極的偶極磁場。水星表面環形山和磁場的發現使科學家很感興趣,因為這些都是前所未知的。但是,磁場的存在必須得到進一步的證實這就要等待到「水手10號」與水星的另一次接近。

水星

由於水手10號僅拍攝到水星表面的37%,所以人類對水星的了解還很少。「水手10號」探測器的飛行軌道是這樣安排的:在到達水星區域時,它每176天繞太陽轉一圈。我們知道,水星每88天繞太陽一周,也就是說,水星每繞太陽兩圈,「水手10號」來到水星附近一次,飛越水星並進行探測。

「水手10號」第二次飛越水星時,距表面最近時在48000公里左右,對水星磁場沒有發現什麼新的情況。為了取得包括磁場在內的更加精確的觀測資料,科學家們對探測器的軌道作了校準,使它第三次飛越水星時,離表面只有327公里,而且更接近水星北極。觀測結果是十分令人鼓舞的:水星確實有一個偶極磁場。從最初發現到完全證實剛好是一年時間。

水星的偶極磁場與地球的很相像,極性也相同,即水星磁場的南極在水星的北半球,其北極在南半球。

水星表面有100多個具有放射條紋的坑穴還有大量斷崖,有的長達數百千米。水星的密度與地球接近,並有一全球性的磁場。水星磁場的發現,表示水星內部可能是一個高溫液態的金屬核。這個既重又大的鐵鎳內核直徑超過水星直徑的1/3,有整個月球那麼大。水星磁場強度只有地球的1%,磁力線的分布圖形簡直就是地球磁場按比例的縮影。

大氣層

水星上有極稀薄的大氣,大氣壓小於2×10百帕大氣中含有氦、氫、氧、碳、氬、氖、氙等元素。由於大氣非常稀薄,水星的表面白天和夜晚的溫度相差很大,實際上水星大氣中的氣體分子與水星表面相撞的頻密程度比它們之間互相相撞要高。出於這些原因,水星應被視為是沒有大氣的。

水星的大氣非常少,主要成份為氦(42%)、汽化鈉(42%)和氧(15%),而且在白天氣溫非常高,平均地表溫度為179℃,最高為427℃,最低為零下173℃,因此水星上看來不可能存在水;但1991年科學家在水星的北極發現了一個不同尋常的亮點,造成這個亮點的可能是在地表或地下的冰。水星上真的有可能存在冰嗎?由於水星的軌道比較特殊,在它的北極,太陽始終只在地平線上徘徊。在一些隕石坑內部,可能由於永遠見不到陽光而使溫度降至零下161℃以下。這樣低的溫度就有可能凝固從行星內部釋放出來的氣體,或積存從太空來的冰。

在太陽的強烈輻射轟擊下,水星大氣被向後壓縮延伸開去,在背陽處形成一個「尾巴」,就像一顆巨大的彗星。然而更詭異的一點是,水星事實上還在不斷的損失其大氣氣體成分。組成水星大氣的原子不斷的被遺失到太空之中,由於鉀或鈉原子在一個水星日(一個水星日——在其近日點一日時間的一半)上大約有3小時的平均 「壽命」。

因此,正如所羅門博士指出的那樣「你需要不斷的進行補充方能維持大氣層的存在。」科學家們認為水星的補充方式是捕獲太陽輻射的粒子,以及被微型隕石撞擊後濺起的塵埃顆粒。散失的大氣不斷地被一些機制所替換,如被行星引力場俘獲的火山蒸汽以及兩極的冰冠的除氣作用。[2] 水星之鐵

水星所含有的鐵的百分率超過任何其他已知的星系行星。這裡有數個的理論被提出來說明水星的高金屬性。

一個理論說本來水星有一個和普通球粒狀隕石相似的金屬—硅酸鹽比率。那時它的質量是目前質量的大約2.25 倍,但在早期太陽系的歷史中的某個時間,一個星子/微星體撞掉了水星的1/6。影響是水星的地殼 和地幔 失去了。類似的另外一個理論是一個用來解釋地球月亮的形成的,參見巨物影響理論。另一種說,水星可能在所謂太陽星雲早期的造型階段,在太陽爆發出它的能量之前已經穩定。在這個理論中水星那時大約質量是目前的兩倍;但因為原恆星收縮,水星的溫度到達了大約2500K 到3500K 之間;甚至高達10000K。許多的水星表面的岩石在這種溫度下蒸發,形成"岩石蒸汽",隨後,"岩石蒸汽" 被星際風暴帶走。第三個理論,類似第二個,認為水星的外殼層是被太陽風長期侵蝕掉了的。 影響地球

水星擁有太陽系8大行星中偏心率最大的軌道,通俗的說,就是它的軌道的橢圓是最「扁」的。而最新的計算機模擬顯示,在未來數十億年間,水星的這一軌道還將變得更扁,使其有1%的機會和太陽或者金星發生撞擊。更讓人擔憂的是,和外側的巨行星引力場一起,水星這樣混亂的軌道運動將有可能打亂內太陽系其他行星的運行軌道,甚至導致水星,金星或火星的軌道發生變動,並最終和地球發生相撞。

行星之最

在太陽系的八大行星中,水星獲得了幾個"最" 的記錄:

離太陽距離最近

水星和太陽的平均距離為5790萬公里,約為日地距離的0.387倍(0.387天文單位),比其它太陽系的行星近,到目前為止還沒有發現過比水星更近太陽的行星。

軌道速度最快

因為距離最近,所以受到太陽的引力也最大,因此在它的軌道上比任何行星都跑得快,軌道速度為每秒48公里,比地球的軌道速度快18公里。這樣快的速度,只用15分鐘就能環繞地球一周。

表面溫差最大

因為沒有大氣的調節,距離太陽又非常近,所以在太陽的烘烤下,向陽面的溫度最高時可達430℃,但背陽面的夜間溫度可降到零下160℃,晝夜溫差近600℃,奪得行星表面溫差最大的冠軍,這真是一個處於火和冰之間的世界。

衛星最少

太陽系中發現了越來越多的衛星,總數超過60個,但水星和金星是根本沒有衛星的行星。

時間最快

水星年

地球每一年繞太陽公轉一圈, 而"水星年"是太陽系中最短的年,它繞太陽公轉一周只用88天,還不到地球上的3個月。這都是因為水星圍繞太陽高速飛奔的緣故,難怪代表水星的標記和符號是根據希臘神話,把它比作腳穿飛鞋手持魔杖的使者。

水星日

在太陽系的行星中,「水星年」時間最短,但水星"日"卻比別的行星更長,水星公轉一周是88天(以地球日為單位)而水星自轉一周是58.646天(地球日),地球每自轉一周就是一晝夜,而水星自轉三周才是一晝夜。水星上一晝夜的時間,相當於地球上的176天。與此同時,水星也正好公轉了兩周。因此人們說水星上的一天等於兩年,地球人到了水星上多麼不習慣。

星體運動

編輯

近日點

水星離太陽的平均距離為5790萬公里,繞太陽公轉軌道的偏心率為0.206,故其軌道很扁。太陽系天體中,除冥王星外,要算水星的軌道最扁了。水星在軌道上的平均運動速度為48公里/秒,是太陽系中運動速度最快的行星,它繞太陽運行一周只需要88天,除公轉之外,水星本身也有自轉。過去認為水星的自轉周期應當與公轉周期相等,都是88天。1965年,美國天文學家戈登、佩蒂吉爾和羅·戴斯用安裝在波多黎各阿雷西博天文台的、當今世界上最大的射電望遠鏡測定了水星的自轉周期,結果並不是88天,而是58.646天,正好是水星公轉周期的2/3。水星軌道有每世紀快43″的反常進動。

由於水星在近日點時總以同一經度朝著太陽,在遠日點時以相差90°的經度朝著太陽,所以水星隨著經度不同而出現季節變化。

公轉

水星的運行軌道是偏心的,半徑從4600萬-7000萬公里變化。圍繞太陽的緩

水星公轉示意圖

慢歲差不能完全地被牛頓經典力學所解釋,以致於在一段時間內很多人用設想的另外一個更靠近太陽的行星(有時被稱為火神星)來解釋這個混亂。這稱為「水星近日點進動」。無論如何,愛因斯坦的廣義相對論後來提供了一種可以消除這個小誤差的解釋。

自轉

1889年義大利天文學家夏帕里利經過多年觀測認為水星自轉時間和公轉時間都是88天。直到1965年,美國天文學家才測量出了水星自轉的精確周期58.646天。

在一些時候,在水星的表面上的一些地方,在同一個水星日里,當一個

水星自轉示意圖

觀測者(在太陽升起時)時觀測,可以看見太陽先上升,然後倒退最後落下,然後再一次的上升。這是因為大約四天的近日點周期,水星軌道速度完全地等於它的自轉速度,以致於太陽的視運動停止,在近日點時,水星的軌道速度超過自轉速度;因此,太陽看起來會逆行性運動,在近日點後的四天,太陽恢復正常的視運動。

1965年使用雷達觀測後,觀察數據否決了水星對太陽是潮汐固定的的想法:自轉使得所有時間裡水星保持相同的一面對著太陽。水星軌速振諧為3:2,這就是說自轉三次的時間是圍繞太陽公轉兩次的時間;水星的軌道離心使這個諧振持穩。最初天文學家認為它有被固定的潮汐是因為水星處於最好的觀測位置,它總是在3:2諧振中的相同時刻,展現出相同的一面,就如同它完全地被固定住一樣。水星的自轉比地球緩慢59倍。

因為水星的3:2 的軌速比率,一個恆星日(自轉的周期)大約是58.7個地球日,一個太陽日(太陽穿越兩次子午線之間的時間)大約是176個地球日。

軌道變動

水星擁有太陽系8大行星中偏心率最大的軌道,通俗的說,就是它的軌道的橢圓是最「扁」的。而最新的計算機模擬顯示,在未來數十億年間,水星的這一軌道還將變得更扁,使其有1%的機會和太陽或者金星發生撞擊。更讓人擔憂的是,和外側的巨行星引力場一起,水星這樣混亂的軌道運動將有可能打亂內太陽系其他行星的運行軌道,甚至導致水星,金星或火星的軌道發生變動,並最終和地球發生相撞。

凌日現象

水星凌日

水星凌日過程示意圖

當水星走到太陽和地球之間時,我們在太陽圓面上會看到一個小黑點穿過,這種現象稱為水星凌日。其道理和日食類似,不同的是水星比月亮離地球遠,視直徑僅為太陽的190萬分之一。水星擋住太陽的面積太小了,不足以使太陽亮度減弱,所以,用肉眼是看不到水星凌日的,只能通過望遠鏡進行投影觀測。水星凌日每100年平均發生13次。在20世紀末有一次凌日是在1999年11月16日5時42分。

在人類歷史上,第一次預告水星凌日是"行星運動三大定律"的發現者,德國天文學家開普勒(1571至1630年)。他在1629年預言:1631年11月7 日將發生稀奇天象--水星凌日。當日,法國天文學家加桑迪在巴黎親眼目睹到有個小黑點(水星)在日面上由東向西徐徐移動。從1631年至2003年,共出現50次水星凌日。其中,發生在11月的有35次,發生在5月的僅有15次。每100年,平均發生水星凌日13.4次。

水星凌日的發生原理與日食極為相似,水星軌道與黃道面之間是存在傾角的,這個傾角大約為7度。這就造成了水星軌道與地球黃道面會有兩個交點。即為升交點和降交點。水星過升交點即為從地球黃道面下方向黃道面上方運動,降交點反之。只有水星和地球兩者的軌道處於同一個平面上,而日水地三者又恰好排成一條直線時,才會發生水星凌日。如果水星在過升降交點附近的兩天恰好也發生了水星下合相位時,就有可能發生水星凌日天象。

在目前及以後的十幾個世紀內,水星凌日只可能發生在五月或十一月。發生在五月的為降交點水星凌日,發生在十一月的為升交點水星凌日。而發生在五月的水星凌日更為稀罕,水星距離地球也更近。水星凌日發生的周期同樣遵循如日月食那樣的沙羅周期。在同一組沙羅周期內的水星凌日的發生周期為46年零1天又6.5小時左右。但是這個46年的周期中如果有12個閏年。周期即為46年零6.5小時左右。這裡所說的時間差值是同一沙羅周期相鄰兩次水星凌日中凌甚的時間差值。因為同一沙羅周期相鄰兩次水星凌日發生的時長是不同的。


推薦閱讀:

TAG:太陽系 | 水星 | 科幻 |