標籤:

Linux進程與線程

進程是資源分配的基本單位,線程是CPU調度的最小單位,線程是程序調度的基本單位。

概述:

進程是具有一定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位.

線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位.線程自己基本上不擁有系統資源,只擁有一點在運行中必不可少的資源(如程序計數器,一組寄存器和棧),但是它可與同屬一個進程的其他的線程共享進程所擁有的全部資源.

一個線程可以創建和撤銷另一個線程;同一個進程中的多個線程之間可以並發執行.

相對進程而言,線程是一個更加接近於執行體的概念,它可以與同進程中的其他線程共享數據,但擁有自己的棧空間,擁有獨立的執行序列。

在串列程序基礎上引入線程和進程是為了提高程序的並發度,從而提高程序運行效率和響應時間。

區別:

進 程和線程的主要差別在於它們是不同的操作系統資源管理方式。進程有獨立的地址空間,一個進程崩潰後,在保護模式下不會對其它進程產生影響,而線程只是一個 進程中的不同執行路徑。線程有自己的堆棧和局部變數,但線程之間沒有單獨的地址空間,一個線程死掉就等於整個進程死掉,所以多進程的程序要比多線程的程序 健壯,但在進程切換時,耗費資源較大,效率要差一些。但對於一些要求同時進行並且又要共享某些變數的並發操作,只能用線程,不能用進程。

1) 簡而言之,一個程序至少有一個進程,一個進程至少有一個線程.

2) 線程的劃分尺度小於進程,使得多線程程序的並發性高。

3) 另外,進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,從而極大地提高了程序的運行效率。

4) 線程在執行過程中與進程還是有區別的。每個獨立的線程有一個程序運行的入口、順序執行序列和程序的出口。但是線程不能夠獨立執行,必須依存在應用程序中,由應用程序提供多個線程執行控制。

5) 從邏輯角度來看,多線程的意義在於一個應用程序中,有多個執行部分可以同時執行。但操作系統並沒有將多個線程看做多個獨立的應用,來實現進程的調度和管理以及資源分配。這就是進程和線程的重要區別。

優缺點:

線程和進程在使用上各有優缺點:線程執行開銷小,但不利於資源的管理和保護;而進程正相反。同時,線程適合於在SMP機器上運行,而進程則可以跨機器遷移。

多進程,多線程

概述:

進程就是一個程序運行的時候被CPU抽象出來的,一個程序運行後被抽象為一個進程,但是線程是從一個進程裡面分割出來的,由於CPU處理進程的時候是採用時間片輪轉的方式,所以要把一個大個進程給分割成多個線程,例如:網際快車中文件分成100部分 10個線程 文件就被分成了10份來同時下載 1-10 佔一個線程 11-20佔一個線程,依次類推,線程越多,文件就被分的越多,同時下載 當然速度也就越快

進程是程序在計算機上的一次執行活動。當 你運行一個程序,你就啟動了一個進程。顯然,程序只是一組指令的有序集合,它本身沒有任何運行的含義,只是一個靜態實體。而進程則不同,它是程序在某個數 據集上的執行,是一個動態實體。它因創建而產生,因調度而運行,因等待資源或事件而被處於等待狀態,因完成任務而被撤消,反映了一個程序在一定的數據集上 運行的全部動態過程。進程是操作系統分配資源的單位。在Windows下,進程又被細化為線程,也就是一個進程下有多個能獨立運行的更小的單位。線程(Thread)是進程的一個實體,是CPU調度和分派的基本單位。線程不能夠獨立執行,必須依存在應用程序中,由應用程序提供多個線程執行控制。

線程和進程的關係是:線程是屬於進程的,線程運行在進程空間內,同一進程所產生的線程共享同一內存空間,當進程退出時該進程所產生的線程都會被強制退出並清除。線程可與屬於同一進程的其它線程共享進程所擁有的全部資源,但是其本身基本上不擁有系統資源,只擁有一點在運行中必不可少的信息(如程序計數器、一組寄存器和棧)。

在同一個時間裡,同一個計算機系統中如果允許兩個或兩個以上的進程處於運行狀態,這便是多任務。現代的操作系統幾乎都是多任務操作系統,能夠同時管理多個進程的運行。 多任務帶來的好處是明顯的,比如你可以邊聽mp3邊上網,與此同時甚至可以將下載的文檔列印出來,而這些任務之間絲毫不會相互干擾。那麼這裡就涉及到並行的問題,俗話說,一心不能二用,這對計算機也一樣,原則上一個CPU只能分配給一個進程,以便運行這個進程。我們通常使用的計算機中只有一個CPU,也就是說只有一顆心,要讓它一心多用,同時運行多個進程,就必須使用並發技術。實現並發技術相當複雜,最容易理解的是「時間片輪轉進程調度演算法」,它的思想簡單介紹如下:在操作系統的管理下,所有正在運行的進程輪流使用CPU,每個進程允許佔用CPU的時間非常短(比如10毫秒),這樣用戶根本感覺不出來CPU是在輪流為多個進程服務,就好象所有的進程都在不間斷地運行一樣。但實際上在任何一個時間內有且僅有一個進程佔有CPU。

如果一台計算機有多個CPU,情況就不同了,如果進程數小於CPU數,則不同的進程可以分配給不同的CPU來運行,這樣,多個進程就是真正同時運行的,這便是並行。但如果進程數大於CPU數,則仍然需要使用並發技術。

在Linux中,進行CPU分配是以線程為單位的,一個進程可能由多個線程組成,這時情況更加複雜,但簡單地說,有如下關係:

匯流排程數<= CPU數量:並行運行

匯流排程數> CPU數量:並發運行

並行運行的效率顯然高於並發運行,所以在多CPU的計算機中,多任務的效率比較高。但是,如果在多CPU計算機中只運行一個進程(線程),就不能發揮多CPU的優勢。

多任務操作系統(如Windows)的基本原理是:操作系統將CPU的時間片分配給多個線程,每個線程在操作系統指定的時間片內完成(注意,這裡的多個線程是分屬於不同進程的).操作系統不斷的從一個線程的執行切換到另一個線程的執行,如此往複,宏觀上看來,就好像是多個線程在一起執行.由於這多個線程分屬於不同的進程,因此在我們看來,就好像是多個進程在同時執行,這樣就實現了多任務.

分類

根據進程與線程的設置,操作系統大致分為如下類型:

(1) 單進程、單線程,MS-DOS大致是這種操作系統;

(2) 多進程、單線程,多數UNIX(及類UNIX的LINUX)是這種操作系統;

(3) 多進程、多線程,Win32(Windows NT/2000/XP等)、Solaris 2.x和OS/2都是這種操作系統;

(4) 單進程、多線程,VxWorks是這種操作系統。

引入線程帶來的主要好處

(1) 在進程內創建、終止線程比創建、終止進程要快;

(2) 同一進程內的線程間切換比進程間的切換要快,尤其是用戶級線程間的切換。

引用自

Unix / Linux 線程的實質?

my.oschina.net圖標
推薦閱讀:

TAG:Linux |