壓電力學

壓電力學

5 人贊了文章

學習筆記,陸續更新……

NONLINEAR ELECTROELASTICITY FOR STRONG FIELDS

(1)the nonlinear theory of electroelasticty for large deformations

(2)strong electric fields

1.DEFORMATION AND MOTION OF A CONTINUUM

(1)reference or material coordinates:

X=X_KI_K

(2)present or spatial coordinates:

y=y_ki_k

(3)kronecker delta:

I_kI_L=delta_{KL} i_ki_l=delta_{kl}

SPECIAL NOTE:

The two coordinate systems are chosen to be coincident, i.e.,

o=O,i_1=I_1, i_2=I_2, i_3=I_3

(4)A line element dX at t_0 deforms into the following line element at t :

dy_i|_{t_{fixed}}=y_{i,K}dX_K

deformation gradient tensor (two-point tensor): y_{k,K}

Jacobian determinant of the deformation: det(y_{k,K})

det(y_{k,K})=det(y_{i,1},y_{j,2},y_{k,1})

=[y_{i,1},y_{j,2},y_{k,1}] =varepsilon_{ijk}y_{i,1}y_{j,2}y_{k,1}

det(y_{k,K})=det(y_{1,K},y_{2,L},y_{3,M})^T

=[y_{1,K},y_{2,L},y_{3,M}] =varepsilon_{KLM} y_{1,K}y_{2,L}y_{3,M}

det(y_{k,K})=frac{1}{6}varepsilon_{klm}varepsilon_{KLM}y_{k,K}y_{l,L}y_{m,M}

(5)The length of a material line element before and after deformation is given by

(dS)^2=dX_KdX_K =delta_{KL}dX_KdX_L

(ds)^2=dy_idy_i =y_{iK}dX_Ky_{iL}dX_L =C_{KL}dX_KdX_L

deformation tensor: C_{KL}=C_{LK}

(6)At the same material point consider two non-collinear material line elements dX^{(1)} and dX^{(2)} which deform into dy^{(1)} and dy^{(2)} .

N_LdA=dA_L=varepsilon_{LMN}dX^{(1)}_MdX^{(2)}_N

n_ida=da_i=varepsilon_{ijk}dy^{(1)}_jdy^{(2)}_k

They are related by da_i=JX_{L,i}dA_L .

(7)At the same material point consider three non-coplanar material line elements dX^{(1)},dX^{(2)} and dX^{(3)} which deform into dy^{(1)},dy^{(2)} and dy^{(3)} .

dv=(dy^{(1)}	imes dy^{(2)}) cdot dy^{(3)} =J (dX^{(1)}	imes dX^{(2)})cdot dX^{(3)}

(8)The deformation rate tensor d_{ij} and the spin tensor omega_{ij} are introduced by decomposing the velocity gradient into symmetric and anti-symmetric parts.

partial_j v_i =v_{ij}=d_{ij}+omega_{ij}

2.GLOBAL BALANCE LAWS

(1)When a dielectric is placed in an electric field, the electric charges in its molecules redistribute themselves microscopically, resulting in a macroscopic polarization.

P=lim_{	riangle V 
ightarrow 0}{frac{sum_{	riangle V}P_{Micro}}{	riangle V}}

(2)Piezoelectric Effects:Whether a material is piezoelectric depends on its microscopic charge distribution.

Experiments show that in certain materials polarization can also be induced by mechanical loads.This is called the direct piezoelectric effect.

When a voltage is applied to a material possessing the direct piezoelectric effect, the material deforms. This is called the converse piezoelectric effect.

(3) Electric Body Force, Couple and Power

When a mechanically deformable and electrically polarizable material is subjected to an electric field, a differential element of the material experiences body force and couple due to the electric field.

F_j^E=
ho_e E_j+E_{j,i}P_i

C^E_i=varepsilon_{ijk}P_jE_k

omega^E=
ho E_idot{pi}_i,(pi=frac{P_i}{
ho})

(4)Balance Laws:

Gauss』s law:

oint_Sigma(varepsilon_0 E+P)cdot dSigma =int_V 
ho_e dV

Faraday』s law:

oint_L Ecdot dL=0

the conservation of mass:

frac{D}{Dt}int_V
ho dV=0

the conservation of linear momentum:

frac{D}{Dt}int_V
ho v dV=int_V(
ho f+F^E) dV+int_Sigma t dSigma

the conservation of angular momentum:

frac{D}{Dt}int_Vy	imes 
ho v dV=int_V[y	imes(
ho f+F^E)+C^E]dV+int_Sigma y	imes t dSigma

the conservation of energy:

frac{D}{Dt}[int_V
ho (frac{1}{2}vcdot v+e) dV]=int_V[(
ho f+F^E) cdot v+omega^E] dV+int_Sigma tcdot v dSigma


推薦閱讀:

TAG:力學 | 數學 | 物理學 |