吳老師-『神經網路與深度學習』第四周
09-06
吳老師-『神經網路與深度學習』第四周
來自專欄青銅演算法工程師日記
- 實現深度神經網路時,常用的檢查代碼有錯的方法,是寫下來,過一遍矩陣的維數。
- 神經網路的正向傳播和反向傳播,方塊代表每層
- 第L層前向傳播,反向傳播的計算公式,左邊是單個樣本,右邊是向量化
- 參數和超參數的一些列舉
作業:
- Initialize the parameters for a two-layer network and for an LL-layer neural network.
- Implement the forward propagation module (shown in purple in the figure below).
- Complete the LINEAR part of a layers forward propagation step (resulting in Z[l]Z[l]).
- We give you the ACTIVATION function (relu/sigmoid).
- Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
- Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer LL). This gives you a new L_model_forward function.
- Compute the loss.
- Implement the backward propagation module (denoted in red in the figure below).
- Complete the LINEAR part of a layers backward propagation step.
- We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
- Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
- Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
- Finally update the parameters.
initialize_parameters(n_x, n_h, n_y)
initialize_parameters_deep(layer_dims)
linear_forward(A, W, b)
linear_activation_forward(A_prev, W, b, activation)
推薦閱讀:
TAG:神經網路 | 深度學習DeepLearning | 機器學習 |