[轉載]《機器學習基石》作業3

[轉載]《機器學習基石》作業3

來自專欄 Antenna的機器學習筆記

原作者:周周周睿

原文鏈接:林軒田-機器學習基石-作業3-python源碼 - CSDN博客

大家好,以下是林軒田機器學習基石--作業3的Python的參考代碼,自己碼的。Python方面沒有工程經驗,如有錯誤或者更好的代碼優化方法,麻煩大家留言提醒一下下,大家互相交流學習,謝謝。

13-15題主要考察在分類問題上的線性回歸和特徵轉換,所使用的樣本點均由目標函數

f(x1; x2) = sign(x1^2 + x2^2 ? 0.6)

產生

13.1:在使用線性回歸且不進行參數轉換的情況下(也就是直接使用特徵向量(1; x1; x2)),對數據進行擬合。進行1000次試驗,並且畫出1000次試驗的Ein的直方圖,並求出Ein的平均值。

### For Questions 13-15, Generate a training set of N = 1000 points on X = [?1; 1] × [?1; 1] with uniform probability of### picking each x 2 X. Generate simulated noise by flipping the sign of the output in a random 10% subset### of the generated training set.import randomimport numpy as npimport matplotlib.pyplot as plt### target function f(x1, x2) = sign(x1^2 + x2^2 - 0.6)def target_function(x1, x2): return (1 if (x1*x1 + x2*x2 - 0.6) >= 0 else -1)### plot dot picture, two dimension featuresdef plot_dot_picture(features, lables, w=np.zeros((3, 1))): x1 = features[:,1] x2 = features[:,2] y = lables[:,0] plot_size = 20 size = np.ones((len(x1)))*plot_size size_x1 = np.ma.masked_where(y<0, size) size_x2 = np.ma.masked_where(y>0, size) ### plot scatter plt.scatter(x1, x2, s=size_x1, marker=x, c=r) plt.scatter(x1, x2, s=size_x2, marker=o, c=b) ### plot w line x1_tmp = np.arange(-1,1,0.01) x2_tmp = np.arange(-1,1,0.01) x1_tmp, x2_tmp = np.meshgrid(x1_tmp, x2_tmp) f = x1_tmp*w[1, 0] + x2_tmp*w[2, 0] + w[0, 0] try: plt.contour(x1_tmp, x2_tmp, f, 0) except ValueError: pass plt.xlabel(X1) plt.ylabel(X2) plt.title(Feature scatter plot) plt.legend() plt.show()### return a numpy arraydef training_data_with_random_error(num=1000): features = np.zeros((num, 3)) labels = np.zeros((num, 1)) points_x1 = np.array([round(random.uniform(-1, 1) ,2) for _ in range(num)]) points_x2 = np.array([round(random.uniform(-1, 1) ,2) for _ in range(num)]) for i in range(num): features[i, 0] = 1 features[i, 1] = points_x1[i] features[i, 2] = points_x2[i] labels[i] = target_function(points_x1[i], points_x2[i]) ### choose 10 error labels if i <= num*0.1: labels[i] = (1 if labels[i]<0 else -1) return features, labelsdef error_rate(features, labels, w): wrong = 0 for i in range(len(labels)): if np.dot(features[i], w)*labels[i,0] < 0: wrong += 1 return wrong/(len(labels)*1.0)(features,labels) = training_data_with_random_error(1000)plot_dot_picture(features, labels)

因為特徵是二維的,很容易用圖片表述。從圖上可以看出,點的分布和目標方程大致一致。

### 13.1 (*) Carry out Linear Regression without transformation, i.e., with feature vector:### (1; x1; x2);### to find wlin, and use wlin directly for classification. Run the experiments for 1000 times and plot### a histogram on the classification (0/1) in-sample error (Ein). What is the average Ein over 1000### experiments?""" linear regression: model : g(x) = Wt * X strategy : squared error algorithm : close form(matrix) result : w = (Xt.X)^-1.Xt.Y"""def linear_regression_closed_form(X, Y): return np.linalg.inv(np.dot(X.T, X)).dot(X.T).dot(Y)w = linear_regression_closed_form(features, labels)""" plot the one result(just for visual)"""plot_dot_picture(features, labels, w)""" run 1000 times, and plot histogram"""error_rate_array = []for i in range(1000): (features,labels) = training_data_with_random_error(1000) w = linear_regression_closed_form(features, labels) error_rate_array.append(error_rate(features, labels, w))bins = np.arange(0,1,0.05)plt.hist(error_rate_array, bins, rwidth_=0.8, histtype=bar)plt.title("Error rate histogram(without feature transform)")plt.show()### error rate, approximately 0.5avr_err = sum(error_rate_array)/(len(error_rate_array)*1.0)print "13.1--Linear regression for classification without feature transform:Average error--",avr_err

下面這張圖片是執行1次試驗學習到的直線,可見效果很糟糕

下面這張直方圖描述的是執行1000次的Ein的直方圖,Ein大概為0.5左右,可以說沒什麼學習效果。證明我們選擇的一次模型不能夠滿足該數據集。

13.1--Linear regression for classification without feature transform:Average error-- 0.50587### Now, transform the training data into the following nonlinear feature vector:### (1; x1; x2; x1x2; x1^2; x2^2)### Find the vector ~w that corresponds to the solution of Linear Regression, and take it for classification.""" feature transform φ(x) = z = (1; x1; x2; x1x2; x1^2; x2^2)"""def feature_transform(features): new = np.zeros((len(features), 6)) new[:, 0:3] = features[:,:]*1 new[:, 3] = features[:, 1] * features[:, 2] new[:, 4] = features[:, 1] * features[:, 1] new[:, 5] = features[:, 2] * features[:, 2] return newdef plot_dot_pictures(features, lables, w=np.zeros((6, 1))): x1 = features[:,1] x2 = features[:,2] y = lables[:,0] plot_size = 20 size = np.ones((len(x1)))*plot_size size_x1 = np.ma.masked_where(y<0, size) size_x2 = np.ma.masked_where(y>0, size) ### plot scatter plt.scatter(x1, x2, s=size_x1, marker=x, c=r) plt.scatter(x1, x2, s=size_x2, marker=o, c=b) ### plot w line x1_tmp = np.arange(-1,1,0.01) x2_tmp = np.arange(-1,1,0.01) x1_tmp, x2_tmp = np.meshgrid(x1_tmp, x2_tmp) f = w[0, 0] + x1_tmp*w[1, 0] + x2_tmp*w[2, 0] + x1_tmp*x2_tmp*w[3, 0] + x1_tmp*x1_tmp*w[4, 0] + x2_tmp*x2_tmp*w[5, 0] try: plt.contour(x1_tmp, x2_tmp, f, 0) except ValueError: pass plt.xlabel(X1) plt.ylabel(X2) plt.title(Feature scatter plot) plt.legend() plt.show()""" plot the one result(just for visual)"""(features,labels) = training_data_with_random_error(1000)new_features = feature_transform(features)w = linear_regression_closed_form(new_features, labels)plot_dot_pictures(features, labels, w)""" run 1000 times, and plot histogram"""error_rate_array = []for i in range(1000): (features,labels) = training_data_with_random_error(1000) new_features = feature_transform(features) w = linear_regression_closed_form(new_features, labels) error_rate_array.append(error_rate(new_features, labels, w))bins = np.arange(0,1,0.05)plt.hist(error_rate_array, bins, rwidth_=0.8, histtype=bar)plt.title("Error rate histogram(with feature transform)")plt.show()### error rate, approximately 0.5avr_err = sum(error_rate_array)/(len(error_rate_array)*1.0)print "13.2--Linear regression for classification with feature transform:Average error--",avr_err

所以在13題後面,我們使用二次的假設,並使用使用了特徵轉換,將非線性問題轉換為線性問題,以便於使用線性回歸。從圖中看出來,我們學習的效果很不錯,錯誤率在12%左右(數據集裡面本身有10%的雜訊點)

13.2--Linear regression for classification with feature transform:Average error-- 0.124849

所以說線性回歸總是適合分類分類問題嗎?下面做了一個小實驗。有意地挑選了六個樣本點,分別在[1,1]附近和[-1, -1]附近。

### is linear regression always good for classification, see the following examplefeatures = np.array([[1, 1.1, 1.2], [1, 1.2,1.0], [1, 1.0, 1.0], [1, -1.1, -1.2], [1, -1.2, -1.0], [1, -1.0, -1.0]])labels = np.array([[1],[1],[1],[-1],[-1],[-1]])w = linear_regression_closed_form(features, labels)""" plot the one result(just for visual)"""plot_dot_picture(features, labels, w)

使用線性回歸,得到如圖的一條直線(其實該結果出乎了我的意料,我還以為會生成一條類似y=x的直線呢)。

### if add a new large x point, what happens?features = np.array([[1, 100, 100], [1, 1.1, 1.2], [1, 1.2,1.0], [1, 1.0, 1.0], [1, -1.1, -1.2], [1, -1.2, -1.0], [1, -1.0, -1.0]])labels = np.array([[1], [1],[1],[1],[-1],[-1],[-1]])w = linear_regression_closed_form(features, labels)""" plot the one result(just for visual)"""print wplot_dot_picture(features, labels, w)print np.dot(features, w)### total 7 points, 2 points error!!!!!

現在加入一個[100, 100]的樣本點,加入這個點是很合理的,可見生成了一條類似Y=X的直線,但是居然有2個點分類錯誤(本來有圖的。。)。但如果該問題用binary classification或者其他的分類器,均可以很好的工作。所以現行回歸併不是總是適合分類問題的。

### 14. (*) Run the experiment for 1000 times, and plot a histogram on ~ w3, the weight associated with### x1x2. What is the average ~ w3?""" run 1000 times, and plot histogram"""w3_array = []for i in range(1000): (features,labels) = training_data_with_random_error(1000) new_features = feature_transform(features) w = linear_regression_closed_form(new_features, labels) w3_array.append(w[3,0])bins = np.arange(-2,2,0.05)plt.hist(w3_array, bins, rwidth_=0.8, histtype=bar)plt.title("Parameters W3(with feature transform)")plt.show()print "Average of W3 is: ", sum(w3_array)/(len(w3_array)*1.0)

Average of W3 is: 0.00120328875641### 15. (*) Continue from Question 14, and plot a histogram on the classification Eout instead. You can### estimate it by generating a new set of 1000 points and adding noise as before. What is the average### Eout?error_out = []for i in range(1000): (features,labels) = training_data_with_random_error(1000) new_features = feature_transform(features) error_out.append(error_rate(new_features,labels, w))bins = np.arange(-1,1,0.05)plt.hist(error_out, bins, rwidth_=0.8, histtype=bar)plt.title("Error out(with feature transform)")plt.show()print "Average of Eout is: ", sum(error_out)/(len(error_out)*1.0)

Average of Eout is: 0.133649### 18. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression, initialized with 0. Run the algorithm with η = 0:001 and T = 2000 on the following set for training:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?import mathimport numpy as np"""Read data from data file"""def data_load(file_path): ### open file and read lines f = open(file_path) try: lines = f.readlines() finally: f.close() ### create features and lables array example_num = len(lines) feature_dimension = len(lines[0].strip().split()) ###i do not know how to calculate the dimension features = np.zeros((example_num, feature_dimension)) features[:,0] = 1 labels = np.zeros((example_num, 1)) for index,line in enumerate(lines): ### items[0:-1]--features items[-1]--label items = line.strip().split( ) ### get features features[index,1:] = [float(str_num) for str_num in items[0:-1]] ### get label labels[index] = float(items[-1]) return features,labels### gradient descentdef gradient_descent(X, Y, w): ### -YnWtXn tmp = -Y*(np.dot(X, w)) ### θ(-YnWtXn) = exp(tmp)/1+exp(tmp) ### weight_matrix = np.array([math.exp(_)/(1+math.exp(_)) for _ in tmp]).reshape(len(X), 1) weight_matrix = np.exp(tmp)/((1+np.exp(tmp))*1.0) gradient = 1/(len(X)*1.0)*(sum(weight_matrix*-Y*X).reshape(len(w), 1)) return gradient### gradient descentdef stochastic_gradient_descent(X, Y, w): ### -YnWtXn tmp = -Y*(np.dot(X, w)) ### θ(-YnWtXn) = exp(tmp)/1+exp(tmp) ###weight = math.exp(tmp[0])/((1+math.exp(tmp[0]))*1.0) weight = np.exp(tmp)/((1+np.exp(tmp))*1.0) gradient = weight*-Y*X return gradient.reshape(len(gradient), 1)### LinearRegression Class,first time use Class, HaHa...class LinearRegression: Linear Regression of My def __init__(self): pass ### fit model def fit(self, X, Y, Eta=0.001, max_interate=2000, sgd=False): ### ?E/?w = 1/N * ∑θ(-YnWtXn)(-YnXn) self.__w = np.zeros((len(X[0]),1)) if sgd == False: for i in range(max_interate): self.__w = self.__w - Eta*gradient_descent(X, Y, self.__w) else: index = 0 for i in range(max_interate): if (index >= len(X)): index = 0 self.__w = self.__w - Eta*stochastic_gradient_descent(np.array(X[index]), Y[index], self.__w) index += 1 ### predict def predict(self, X): binary_result = np.dot(X, self.__w) >= 0 return np.array([(1 if _ > 0 else -1) for _ in binary_result]).reshape(len(X), 1) ### get vector w def get_w(self): return self.__w ### score(error rate) def score(self, X, Y): predict_Y = self.predict(X) return sum(predict_Y != Y)/(len(Y)*1.0)### training model(X, Y) = data_load("hw3_train.dat")lr = LinearRegression()lr.fit(X, Y, max_interate = 2000)### get weight vectorprint "weight vector: ", lr.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")###print "Eout: ", lr.score(test_X,test_Y) lr.score(test_X,test_Y)weight vector: [[ 0.01878417] [-0.01260595] [ 0.04084862] [-0.03266317] [ 0.01502334] [-0.03667437] [ 0.01255934] [ 0.04815065] [-0.02206419] [ 0.02479605] [ 0.06899284] [ 0.0193719 ] [-0.01988549] [-0.0087049 ] [ 0.04605863] [ 0.05793382] [ 0.061218 ] [-0.04720391] [ 0.06070375] [-0.01610907] [-0.03484607]]array([ 0.475])### 19. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression,### initialized with 0. Run the algorithm with η = 0:01 and T = 2000 on the following set for training:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?### training model(X, Y) = data_load("hw3_train.dat")lr_eta = LinearRegression()lr_eta.fit(X, Y, 0.01, 2000)### get weight vectorprint "weight vector: ", lr_eta.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")print "Eout: ", lr_eta.score(test_X,test_Y)weight vector: [[-0.00385379] [-0.18914564] [ 0.26625908] [-0.35356593] [ 0.04088776] [-0.3794296 ] [ 0.01982783] [ 0.33391527] [-0.26386754] [ 0.13489328] [ 0.4914191 ] [ 0.08726107] [-0.25537728] [-0.16291797] [ 0.30073678] [ 0.40014954] [ 0.43218808] [-0.46227968] [ 0.43230193] [-0.20786372] [-0.36936337]]Eout: [ 0.22]### 20. (*) Implement the fixed learning rate stochastic gradient descent algorithm below for logistic regression,### initialized with 0. Instead of randomly choosing n in each iteration, please simply pick### the example with the cyclic order n = 1; 2; : : : ; N; 1; 2; : : :. Run the algorithm with η = 0:001 and### T = 2000 on the following set for training:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?### training model(X, Y) = data_load("hw3_train.dat")lr_sgd = LinearRegression()lr_sgd.fit(X, Y, sgd=True, max_interate = 2000)### get weight vectorprint "weight vector: ", lr_sgd.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")print "Eout: ", lr_sgd.score(test_X,test_Y)weight vector: [[ 0.01826899] [-0.01308051] [ 0.04072894] [-0.03295698] [ 0.01498363] [-0.03691042] [ 0.01232819] [ 0.04791334] [-0.02244958] [ 0.02470544] [ 0.06878235] [ 0.01897378] [-0.02032107] [-0.00901469] [ 0.04589259] [ 0.05776824] [ 0.06102487] [-0.04756147] [ 0.06035018] [-0.01660574] [-0.03509342]]Eout: [ 0.473]

推薦閱讀:

作業編號5.入行論第14課第4個頌詞講考
老師您布置的作業學生愛做嗎?
標準作業改善工具的運用
古田8T出品 凱美瑞240V提車作業
清華校長一針見血:孩子寫作業磨蹭,就得用這9句「狠話」根治!

TAG:機器學習 | 作業 | Python |