1-3.The Kohn-Sham equations

1-3.The Kohn-Sham equations

來自專欄 A note on DFT

Rewrite the H_{HK} in:

egin{eqnarray} H_{HK}[
ho]&=&T_0+V_H+(V-V_H)+(+T-T_0)
onumber\ &=&T_0+V_H+V_x+V_c
onumber\ &=&T_0+V_H+V_{xc}\ H_{ext}[
ho]&=&T_0[
ho]+V_H[
ho]+V_{xc}[
ho]+V_{ext}[
ho] end{eqnarray}

Using the Kohn-Sham Hamiltonian, we rewrite the H_{ext} as H_{KS}

egin{eqnarray} hat{H}_{KS}&equiv&hat{T}_0+hat{V}_H+hat{V}_{xc}+hat{V}_{ext}\ hat{T}_0&equiv&-frac{hbar^2}{2m}
abla^2\ hat{V}_H&equiv&frac{e^2}{4piepsilon_0}int dvec{r}frac{
ho(vec{r})}{|vec{r}-vec{r}|}\ hat{V}_{xc}&equiv&frac{delta V_{xc}[
ho]}{delta
ho} end{eqnarray}

The exact ground-state density of an N-electron system is

egin{eqnarray} 
ho(vec{r})&equiv&sum^N_{i=1}phi_i(vec{r})^*phi_i(vec{r}) end{eqnarray}

Where the single-particle wave functions phi_i are the N lowest-energy solutions of the Kohn-Sham equation

egin{eqnarray} hat{H}_{KS}phi_i&=&epsilon_iphi_i end{eqnarray}

Be aware that the single-particle wave functions phi_i are not the wave functions of electrons! They describe mathematical quasi-particles, without a direct physical meaning. Only the ouver-all-density of these quasi-particles is guaranteed to be equal to the true electron density. Also the single-particle energies epsilon_i are not single-electron energies.


推薦閱讀:

【百秒物理】反物質
【趣味科普】液壓金塊會怎樣?
法蘭類型及其密封面
核物理學家趙忠堯傑出的人生
每分鐘600 億圈!有史以來轉速最快的裝置誕生

TAG:物理學 | 凝聚態物理 |