PaddleFluid與Kaggle 貓狗大戰
來自專欄小石頭的碼瘋窩8 人贊了文章
PaddleFluid簡介
前面有介紹PaddlePaddle下做圖像分類的工作,還有搭配VisualDL做metric可視化,今天我來嘗試使用PaddleFluid來做圖像分類的工作。
這裡需要說明的是,PaddleFluid更新的頻率太高了,我這裡的代碼是在0.13.0的基礎上寫的,很多更方便的api,我在官方的github上的branch看到了,但是暫時無法使用,不過我這裡也會告訴大家這些新的寫法,Fluid文檔太少,需要看代碼研究python介面模型介紹
resnet 搞過圖像的應該都知道,kaiminghe的resnet,
Deep Residual Learning for Image Recognition (15年年底的文章,竟然有9496個citations),就是那個最開始搞過1000多層的網路的,原理不說了,好多好多的文章,隨便一搜就好啦。這裡,我們也不需要把resnet的每一層用fluid都寫出來,PaddlePaddle的repo裡面有這塊的工作,我們直接復用就好啦resnet.pyDog vs Cat
Kaggle網站上找到Dog vs Cat 數據集,
Dogs vs. Cats, 安裝好kaggle-api 後kaggle competitions download -c dogs-vs-cats
即可下載數據集,後面實驗我在訓練集中用80%做訓練數據,20%做驗證集。Image Reader
def default_mapper(sample): img, label = sample img = image.simple_transform( img, 256, 224, True, mean=[103.94, 116.78, 123.68]) return img.flatten().astype(float32), labeldef dataset_reader(data_dir, train_val_ratio=0.8): img_list = [] img2label = dict() label2id = dict() sub_dirs = [i for i in os.listdir(data_dir) if os.path.isdir(i)] for index, sub_dir in enumerate(sub_dirs): label2id[sub_dir] = index sub_files = [] for root, dir, files in os.walk(os.path.join(data_dir, sub_dir)): sub_files = [os.path.join(root, file) for file in files if file.split(".")[-1] in ["jpg, jpeg"]] img_list += sub_files for file in sub_files: img2label[file] =sub_dir random.shuffle(img_list) train_len = int(train_val_ratio*len(img_list)) train_img_list = img_list[:train_len] val_img_list = img_list[train_len:] def train_reader(): for idx, imgfile in enumerate(train_img_list): try: data = image.load_image(imgfile) label = [label2id[img2label[imgfile]], ] yield [data, label] except Exception as e: print "error infor: {0}".format(e.message) continue def test_reader(): for idx, imgfile in enumerate(val_img_list): try: data = image.load_image(imgfile) label = [label2id[img2label[imgfile]], ] yield [data, label] except Exception as e: print "error infor: {0}".format(e.message) continue return paddle.reader.map_readers(default_mapper, train_reader), paddle.reader.map_readers(default_mapper, test_reader)
data_reader函數主要有兩個部分:
- 遍歷所有圖像;
- 讀取圖像,生成train,test的生成器;
模型構建
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act=relu): conv1 = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv1, act=act)def shortcut(input, ch_out, stride): ch_in = input.shape[1] # if args.data_format == NCHW else input.shape[-1] if ch_in != ch_out: return conv_bn_layer(input, ch_out, 1, stride, 0, None) else: return inputdef basicblock(input, ch_out, stride): short = shortcut(input, ch_out, stride) conv1 = conv_bn_layer(input, ch_out, 3, stride, 1) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None) return fluid.layers.elementwise_add(x=short, y=conv2, act=relu)def bottleneck(input, ch_out, stride): short = shortcut(input, ch_out * 4, stride) conv1 = conv_bn_layer(input, ch_out, 1, stride, 0) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1) conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None) return fluid.layers.elementwise_add(x=short, y=conv3, act=relu)def layer_warp(block_func, input, ch_out, count, stride): res_out = block_func(input, ch_out, stride) for i in range(1, count): res_out = block_func(res_out, ch_out, 1) return res_outdef resnet(input, class_dim, depth=18, data_format=NCHW): cfg = { 18: ([2, 2, 2, 1], basicblock), 34: ([3, 4, 6, 3], basicblock), 50: ([3, 4, 6, 3], bottleneck), 101: ([3, 4, 23, 3], bottleneck), 152: ([3, 8, 36, 3], bottleneck) } stages, block_func = cfg[depth] conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3) pool1 = fluid.layers.pool2d( input=conv1, pool_type=avg, pool_size=3, pool_stride=2) res1 = layer_warp(block_func, pool1, 64, stages[0], 1) res2 = layer_warp(block_func, res1, 128, stages[1], 2) res3 = layer_warp(block_func, res2, 256, stages[2], 2) res4 = layer_warp(block_func, res3, 512, stages[3], 2) pool2 = fluid.layers.pool2d( input=res4, pool_size=7, pool_type=avg, pool_stride=1, global_pooling=True) out = fluid.layers.fc(input=pool2, size=class_dim, act=softmax) return out
resnet()配置不同層數的resnet網路,如resnet50,resnet34, resnet101等,,這裡主要是fluid的api,主要是和模型結構相關的,一般來說,經典的模型都會有重現,想使用的同學google一下會有相應的實現,當然也要理解下怎麼做的,這裡我就不深究了,對比著論文應該不難。
訓練
def train(args): # logger = LogWriter(args.logdir, sync_cycle=10000) model = resnet class_dim = args.class_dim if args.data_format == NCHW: dshape = [3, 224, 224] else: dshape = [224, 224, 3] if not args.data_path: raise Exception( "Must specify --data_path when training with imagenet") train_reader, test_reader = dataset_reader(args.data_path) print(train_reader) def train_network(): input = fluid.layers.data(name=image, shape=dshape, dtype=float32) predict = model(input, class_dim) label = fluid.layers.data(name=label, shape=[1], dtype=int64) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) batch_acc = fluid.layers.accuracy(input=predict, label=label) return [avg_cost, batch_acc] optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) batched_train_reader = paddle.batch( paddle.reader.shuffle( train_reader, buf_size=5120), batch_size=args.batch_size ) batched_test_reader = paddle.batch( test_reader, batch_size=args.batch_size) def event_handler(event): if isinstance(event, fluid.EndStepEvent): print(Pass:{0},Step: {1},Metric: {2}.format(event.epoch, event.step, event.metrics)) if isinstance(event, fluid.EndEpochEvent): # save model to dir #trainer.save_params(".") avg_cost, acc = trainer.test(reader=batched_test_reader, feed_order=["image", "label"]) print(Pass:{0},val avg_cost: {1}, acc: {2}.format(event.epoch, avg_cost, acc)) trainer.save_params("./ckpt") # write the loss, acc to visualdl file pass # place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) trainer = fluid.Trainer( train_func=train_network, optimizer=optimizer, place=place) print("Begin to Train") trainer.train( reader=batched_train_reader, num_epochs=args.pass_num, event_handler=event_handler, feed_order=[image, label])
train()主要包括:
- 構建模型,主要是resnet的部分,構建各種不同的layer,直接使用上節的模型構造即可;
- 構建訓練相關的部分,配置輸入輸出(input,label),構建cost,acc這類op;
- 將train_reader, test_reader包裝為batch_reader;
- 配置設備信息、新建Trainer開始訓練;
- epoch結束後保存模型的部分還是使用v2的風格,github中Fluid已經支持CheckpointConfig來完成相應的配置,傳給Trainer,但是我這邊應該從pip安裝的是0.13.0的版本,我進系統的文件看了下這部分更改沒有更新,所以就先使用v2的風格,save_params來保存模型參數,個人從技術角度來說更偏愛CheckpointConfig這種config的模式。
訓練日誌
訓練過程中發現一點問題:GPU佔用率跳動比較頻繁, 佔用率經常跳到0,懷疑是等待問題,看代碼部分發現paddle.reader.map_readers(default_mapper, train_reader)
沒有配置多個線程, 應該是由於單個線程在讀image,包括預處理的部分時間過長,造成了gpu計算時間的等待, 修改為paddle.reader.xmap_readers(default_mapper, train_reader, cpu_count(), 51200)
之後,運行快了很多,不過還是有比較明顯的GPU佔用率跳的比較明顯,看了下源碼,讀取數據的部分是python實現的,並不是很高效,現在只有一張卡,還好,要是多張卡,等待會更明顯,這部分應該有一個更好的替代方案,可以從底層cpp來實現相應的讀取邏輯,效率會很高。def xmap_readers(mapper, reader, process_num, buffer_size, order=False): end = XmapEndSignal() # define a worker to read samples from reader to in_queue def read_worker(reader, in_queue): for i in reader(): in_queue.put(i) in_queue.put(end) # define a worker to read samples from reader to in_queue with order flag def order_read_worker(reader, in_queue): in_order = 0 for i in reader(): in_queue.put((in_order, i)) in_order += 1 in_queue.put(end) # define a worker to handle samples from in_queue by mapper # and put mapped samples into out_queue def handle_worker(in_queue, out_queue, mapper): sample = in_queue.get() while not isinstance(sample, XmapEndSignal): r = mapper(sample) out_queue.put(r) sample = in_queue.get() in_queue.put(end) out_queue.put(end) # define a worker to handle samples from in_queue by mapper # and put mapped samples into out_queue by order def order_handle_worker(in_queue, out_queue, mapper, out_order): ins = in_queue.get() while not isinstance(ins, XmapEndSignal): order, sample = ins r = mapper(sample) while order != out_order[0]: pass out_queue.put(r) out_order[0] += 1 ins = in_queue.get() in_queue.put(end) out_queue.put(end) def xreader(): in_queue = Queue(buffer_size) out_queue = Queue(buffer_size) out_order = [0] # start a read worker in a thread target = order_read_worker if order else read_worker t = Thread(target=target, args=(reader, in_queue)) t.daemon = True t.start() # start several handle_workers target = order_handle_worker if order else handle_worker args = (in_queue, out_queue, mapper, out_order) if order else ( in_queue, out_queue, mapper) workers = [] for i in xrange(process_num): worker = Thread(target=target, args=args) worker.daemon = True workers.append(worker) for w in workers: w.start() sample = out_queue.get() while not isinstance(sample, XmapEndSignal): yield sample sample = out_queue.get() finish = 1 while finish < process_num: sample = out_queue.get() if isinstance(sample, XmapEndSignal): finish += 1 else: yield sample return xreader
Image Augmentation
前面,我簡單地跑起了流程,沒有做基本的處理,比如Image Augmentation,如果做了Image Augmentation, 效果應該會更好一些,這裡我們測試一下Image Augmentation。
讀下上面的代碼, Image Augmentation的部分可以在default_maper的部分實現,這裡我們嘗試下:
DATA_DIM=224img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))def resize_short(img, target_size): percent = float(target_size) / min(img.size[0], img.size[1]) resized_width = int(round(img.size[0] * percent)) resized_height = int(round(img.size[1] * percent)) img = img.resize((resized_width, resized_height), Image.LANCZOS) return imgdef crop_image(img, target_size, center): width, height = img.size size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img.crop((w_start, h_start, w_end, h_end)) return imgdef random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]): aspect_ratio = math.sqrt(random.uniform(*ratio)) w = 1. * aspect_ratio h = 1. / aspect_ratio bound = min((float(img.size[0]) / img.size[1]) / (w**2), (float(img.size[1]) / img.size[0]) / (h**2)) scale_max = min(scale[1], bound) scale_min = min(scale[0], bound) target_area = img.size[0] * img.size[1] * random.uniform(scale_min, scale_max) target_size = math.sqrt(target_area) w = int(target_size * w) h = int(target_size * h) i = random.randint(0, img.size[0] - w) j = random.randint(0, img.size[1] - h) img = img.crop((i, j, i + w, j + h)) img = img.resize((size, size), Image.LANCZOS) return imgdef rotate_image(img): angle = random.randint(-10, 10) img = img.rotate(angle) return imgdef distort_color(img): def random_brightness(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Brightness(img).enhance(e) def random_contrast(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Contrast(img).enhance(e) def random_color(img, lower=0.5, upper=1.5): e = random.uniform(lower, upper) return ImageEnhance.Color(img).enhance(e) ops = [random_brightness, random_contrast, random_color] random.shuffle(ops) img = ops[0](img) img = ops[1](img) img = ops[2](img) return imgdef process_image(sample, mode, color_jitter, rotate): img_path = sample[0] img = Image.open(img_path) #img = sample[0] if mode == train: if rotate: img = rotate_image(img) img = random_crop(img, DATA_DIM) else: img = resize_short(img, target_size=256) img = crop_image(img, target_size=DATA_DIM, center=True) if mode == train: if color_jitter: img = distort_color(img) if random.randint(0, 1) == 1: img = img.transpose(Image.FLIP_LEFT_RIGHT) if img.mode != RGB: img = img.convert(RGB) img = np.array(img).astype(float32).transpose((2, 0, 1)) / 255 img -= img_mean img /= img_std if mode == train or mode == val: return img, sample[1] elif mode == test: return [img]
然後修改mapper的部分:
train_mapper = functools.partial(process_image, mode="train", color_jitter=False, rotate=False)test_mapper = functools.partial(process_image, mode="test")return paddle.reader.xmap_readers(train_mapper, train_reader, cpu_count(), 51200), paddle.reader.xmap_readers(test_mapper, test_reader, cpu_count(), 5120)
這裡我們對比下Image Augmentation前後的,在驗證集上的結果:
推薦閱讀:
※【ML專欄】可解釋性與修badcase
※應用logistic回歸模型對SoftDrink數據集進行分析
※集成學習之Boosting —— Gradient Boosting原理
※黑盒函數的探索
※開放數據獲取匯總(持續更新)
TAG:深度學習DeepLearning | 機器學習 | PaddlePaddle |