標籤:

人臉識別[一] 演算法和資料庫總結

人臉識別[一] 演算法和資料庫總結

來自專欄人臉識別7 人贊了文章

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

1. [DeepFace](cs.toronto.edu/~ranzato).A work from Facebook.

2. [FaceNet](cv-foundation.org/opena).A work from Google.

3. [ One Millisecond Face Alignment with an Ensemble of Regression Trees](csc.kth.se/~vahidk/pape). Dlib implements the algorithm.

4. [DeepID](mmlab.ie.cuhk.edu.hk/pd)

5. [DeepID2]([1406.4773] Deep Learning Face Representation by Joint Identification-Verification)

6. [DeepID3](Face Recognition with Very Deep Neural Networks)

7. [Learning Face Representation from Scratch]([1411.7923] Learning Face Representation from Scratch)

8. [Face Search at Scale: 80 Million Gallery](80 Million Gallery)

9. [A Discriminative Feature Learning Approach for Deep Face Recognition](ydwen.github.io/papers/)

10. [NormFace: L2 Hypersphere Embedding for Face Verification](arxiv.org/abs/1704.0636).* attention: model released !*

11. [SphereFace: Deep Hypersphere Embedding for Face Recognition](Deep Hypersphere Embedding for Face Recognition)

12.[VGGFace2: A dataset for recognising faces across pose and age ]A dataset for recognising faces across pose and age

Datasets

1. [CASIA WebFace Database](Center for Biometrics and Security Research). 10,575 subjects and 494,414 images

2. [Labeled Faces in the Wild](vis-www.cs.umass.edu/lf).13,000 images and 5749 subjects

3. [Large-scale CelebFaces Attributes (CelebA) Dataset](403 Forbidden) 202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.

4. [MSRA-CFW](MSRA-CFW: Data Set of Celebrity Faces on the Web - Microsoft Research). 202,792 images and 1,583 subjects.

5. [MegaFace Dataset](MegaFace) 1 Million Faces for Recognition at Scale

690,572 unique people

6. [FaceScrub](vintage - resources). A Dataset With Over 100,000 Face Images of 530 People.

7. [FDDB](FDDB : Main).Face Detection and Data Set Benchmark. 5k images.

8. [AFLW](ICG - Research).Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.

9. [AFW](Face Detection Matlab Code). Annotated Faces in the Wild. ~1k images.

10.[3D Mask Attack Dataset](3D Mask Attack Dataset). 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)

11. [Audio-visual database for face and speaker recognition](MOBIO - DDP).Mobile Biometry MOBIO mobioproject.org/

12. [BANCA face and voice database](The BANCA Database). Univ of Surrey

13. [Binghampton Univ 3D static and dynamic facial expression database](cs.binghamton.edu/~liju). (Lijun Yin, Peter Gerhardstein and teammates)

14. [The BioID Face Database](BioID Face Database | Dataset for Face Detection | facedb - BioID). BioID group

15. [Biwi 3D Audiovisual Corpus of Affective Communication](ETHZ - Computer Vision Lab:). 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.

16. [Cohn-Kanade AU-Coded Expression Database](The Affect Analysis Group at Pittsburgh). 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.

17. [CMU/MIT Frontal Faces ](CBCL SOFTWARE). Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.

18. [AT&T Database of Faces](The Database of Faces) 400 faces of 40 people (10 images per people)

Trained Model

1. [openface](cmusatyalab/openface). Face recognition with Googles FaceNet deep neural network using Torch.

2. [VGG-Face](VGG Face Descriptor). VGG-Face CNN descriptor. Impressed embedding loss.

3. [SeetaFace Engine](seetaface/SeetaFaceEngine). SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.

4. [Caffe-face](ydwen/caffe-face) - Caffe Face is developed for face recognition using deep neural networks.

5. [Norm-Face](happynear/NormFace) - Norm Face, finetuned from [center-face](ydwen/caffe-face) and [Light-CNN](AlfredXiangWu/face_verification_experiment)

6. [VGG-Face2]VGG-Face 2Dataset

Software

1. [OpenCV](OpenCV library). With some trained face detector models.

2. [dlib](dlib C++ Library - Machine Learning). Dlib implements a state-of-the-art of face Alignment algorithm.

3. [ccv](liuliu/ccv). With a state-of-the-art frontal face detector

4. [libfacedetection](ShiqiYu/libfacedetection). A binary library for face detection in images.

5. [SeetaFaceEngine](seetaface/SeetaFaceEngine). An open source C++ face recognition engine.

Frameworks

1. [Caffe](Caffe | Deep Learning Framework)

2. [Torch7](torch/torch7)

3. [Theano](Welcome - Theano 1.0.0 documentation)

4. [cuda-convnet](code.google.com/p/cuda-)

5. [MXNET](apache/incubator-mxnet)

6. [Tensorflow](tensorflow)

7. [tiny-dnn](tiny-dnn/tiny-dnn)

Miscellaneous

1. [faceswap](matthewearl/faceswap) Face swapping with Python, dlib, and OpenCV

2. [Facial Keypoints Detection](Facial Keypoints Detection | Kaggle) Competition on Kaggle.

3. [An implementation of Face Alignment at 3000fps via Local Binary Features](freesouls/face-alignment-at-3000fps)


layout: post

category: deep_learning

title: Face Recognition

date: 2015-10-09

Papers

DeepID

Deep Learning Face Representation from Predicting 10,000 Classes

  • intro: CVPR 2014
  • paper: mmlab.ie.cuhk.edu.hk/pd
  • github: github.com/stdcoutzyx/D

DeepID2

Deep Learning Face Representation by Joint Identification-Verification

  • paper: papers.nips.cc/paper/54

基於Caffe的DeepID2實現

  • 1. miaoerduo.com/deep-lear
  • 2. miaoerduo.com/deep-lear
  • 3. miaoerduo.com/deep-lear

DeepID2+

Deeply learned face representations are sparse, selective, and robust

  • arxiv: arxiv.org/abs/1412.1265
  • video: research.microsoft.com/
  • mirror: pan.baidu.com/s/1boufl3

MobileID

MobileID: Face Model Compression by Distilling Knowledge from Neurons

  • intro: AAAI 2016 Oral. CUHK
  • intro: MobileID is an extremely fast face recognition system by distilling knowledge from DeepID2
  • project page: personal.ie.cuhk.edu.hk
  • paper: personal.ie.cuhk.edu.hk
  • github: github.com/liuziwei7/mo

DeepFace

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

  • intro: CVPR 2014. Facebook AI Research
  • paper: cs.toronto.edu/~ranzato
  • slides: valse.mmcheng.net/ftp/2
  • github: github.com/RiweiChen/De

Deep Face Recognition

  • intro: BMVC 2015
  • paper: robots.ox.ac.uk/~vgg/pu
  • homepage: robots.ox.ac.uk/~vgg/so
  • github(Keras): github.com/rcmalli/kera

FaceNet

FaceNet: A Unified Embedding for Face Recognition and Clustering

  • intro: Google Inc. CVPR 2015
  • arxiv: arxiv.org/abs/1503.0383
  • github(Tensorflow): github.com/davidsandber
  • github(Caffe): github.com/hizhangp/tri

Real time face detection and recognition

  • intro: Real time face detection and recognition base on opencv/tensorflow/mtcnn/facenet
  • github: github.com/shanren7/rea

Targeting Ultimate Accuracy: Face Recognition via Deep Embedding

  • intro: CVPR 2015
  • arxiv: arxiv.org/abs/1506.0731

Learning Robust Deep Face Representation

  • arxiv: arxiv.org/abs/1507.0484

A Light CNN for Deep Face Representation with Noisy Labels

  • arxiv: arxiv.org/abs/1511.0268
  • github: github.com/AlfredXiangW

Pose-Aware Face Recognition in the Wild

  • paper: www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf

Triplet Probabilistic Embedding for Face Verification and Clustering

  • intro: Oral Paper in BTAS 2016; NVIDIA Best paper Award
  • arxiv: arxiv.org/abs/1604.0541
  • github(Keras): github.com/meownoid/fac

Recurrent Regression for Face Recognition

  • arxiv: arxiv.org/abs/1607.0699

A Discriminative Feature Learning Approach for Deep Face Recognition

  • intro: ECCV 2016
  • intro: center loss
  • paper: ydwen.github.io/papers/
  • github: github.com/ydwen/caffe-
  • github: github.com/pangyupo/mxn

Deep Face Recognition with Center Invariant Loss

  • intro: ACM MM Workshop
  • paper: www1.ece.neu.edu/~yuewu

How Image Degradations Affect Deep CNN-based Face Recognition?

  • arxiv: arxiv.org/abs/1608.0524

VIPLFaceNet: An Open Source Deep Face Recognition SDK

  • keywords: VIPLFaceNet / SeetaFace Engine
  • arxiv: arxiv.org/abs/1609.0389

SeetaFace Engine

  • intro: SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.
  • github: github.com/seetaface/Se

A Discriminative Feature Learning Approach for Deep Face Recognition

  • intro: ECCV 2016
  • paper: ydwen.github.io/papers/

Sparsifying Neural Network Connections for Face Recognition

  • paper: ee.cuhk.edu.hk/~xgwang/

Range Loss for Deep Face Recognition with Long-tail

  • arxiv: arxiv.org/abs/1611.0897

Hybrid Deep Learning for Face Verification

  • intro: TPAMI 2016. CNN+RBM
  • paper: ee.cuhk.edu.hk/~xgwang/

Towards End-to-End Face Recognition through Alignment Learning

  • intro: Tsinghua University
  • arxiv: arxiv.org/abs/1701.0717

Multi-Task Convolutional Neural Network for Face Recognition

  • arxiv: arxiv.org/abs/1702.0471

NormFace: L2 Hypersphere Embedding for Face Verification

  • arxiv: arxiv.org/abs/1704.0636
  • github: github.com/happynear/No

SphereFace: Deep Hypersphere Embedding for Face Recognition

  • intro: CVPR 2017
  • arxiv: wyliu.com/papers/LiuCVP
  • github: github.com/wy1iu/sphere
  • demo: v-wb.youku.com/v_show/i

L2-constrained Softmax Loss for Discriminative Face Verification

arxiv.org/abs/1703.0950

Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture

  • intro: Amirkabir University of Technology & MIT
  • arxiv: arxiv.org/abs/1706.0624

Enhancing Convolutional Neural Networks for Face Recognition with Occlusion Maps and Batch Triplet Loss

arxiv.org/abs/1707.0792

Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification

arxiv.org/abs/1709.0292

Improving Heterogeneous Face Recognition with Conditional Adversarial Networks

arxiv.org/abs/1709.0284

Face Sketch Matching via Coupled Deep Transform Learning

  • intro: ICCV 2017
  • arxiv: arxiv.org/abs/1710.0291

Additive Margin Softmax for Face Verification

  • keywords: additive margin Softmax (AM-Softmax),
  • arxiv: arxiv.org/abs/1801.0559
  • github: github.com/happynear/AM

Face Recognition via Centralized Coordinate Learning

arxiv.org/abs/1801.0567

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

  • arxiv: arxiv.org/abs/1801.0769
  • github: github.com/deepinsight/

CosFace: Large Margin Cosine Loss for Deep Face Recognition

arxiv.org/abs/1801.0941

Ring loss: Convex Feature Normalization for Face Recognition

  • intro: CVPR 2018
  • arxiv: arxiv.org/abs/1803.0013

Pose-Robust Face Recognition via Deep Residual Equivariant Mapping

  • intro: CVPR 2018. CUHK & SenseTime Research
  • arxiv: arxiv.org/abs/1803.0083

Video Face Recognition

Attention-Set based Metric Learning for Video Face Recognition

arxiv.org/abs/1704.0380

SeqFace: Make full use of sequence information for face recognitio

  • arxiv: arxiv.org/abs/1803.0652
  • github: github.com/huangyangyu/

Facial Point / Landmark Detection

Deep Convolutional Network Cascade for Facial Point Detection

  • homepage: mmlab.ie.cuhk.edu.hk/ar
  • paper: ee.cuhk.edu.hk/~xgwang/
  • github: github.com/luoyetx/deep

Facial Landmark Detection by Deep Multi-task Learning

  • intro: ECCV 2014
  • project page: mmlab.ie.cuhk.edu.hk/pr
  • paper: personal.ie.cuhk.edu.hk
  • github(Matlab): github.com/zhzhanp/TCDC

A Recurrent Encoder-Decoder Network for Sequential Face Alignment

  • intro: ECCV 2016 oral
  • project page: sites.google.com/site/x
  • arxiv: arxiv.org/abs/1608.0547
  • slides: drive.google.com/file/d
  • github: github.com/xipeng13/rec

RED-Net: A Recurrent Encoder-Decoder Network for Video-based Face Alignment

  • intro: IJCV
  • arxiv: arxiv.org/abs/1801.0606

Detecting facial landmarks in the video based on a hybrid framework

  • arxiv: arxiv.org/abs/1609.0644

Deep Constrained Local Models for Facial Landmark Detection

  • arxiv: arxiv.org/abs/1611.0865

Effective face landmark localization via single deep network

  • arxiv: arxiv.org/abs/1702.0271

A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

arxiv.org/abs/1704.0188

Deep Alignment Network: A convolutional neural network for robust face alignment

  • intro: CVPRW 2017
  • arxiv: arxiv.org/abs/1706.0178
  • gihtub: github.com/MarekKowalsk

Joint Multi-view Face Alignment in the Wild

arxiv.org/abs/1708.0602

FacePoseNet: Making a Case for Landmark-Free Face Alignment

arxiv.org/abs/1708.0751

Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks

arxiv.org/abs/1711.0675

Brute-Force Facial Landmark Analysis With A 140,000-Way Classifier

  • intro: AAAI 2018
  • arxiv: arxiv.org/abs/1802.0177
  • github: github.com/mtli/BFFL

Style Aggregated Network for Facial Landmark Detection

  • intro: CVPR 2018
  • arxiv: arxiv.org/abs/1803.0410
  • github: github.com/D-X-Y/SAN

Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment

arxiv.org/abs/1803.0558

Projects

Using MXNet for Face-related Algorithm

  • github: github.com/tornadomeet/

clmtrackr: Javascript library for precise tracking of facial features via Constrained Local Models

  • github: github.com/auduno/clmtr
  • blog: auduno.com/post/6188827
  • demo: auduno.github.io/clmtra
  • demo: auduno.github.io/clmtra
  • demo: auduno.github.io/clmtra
  • demo: auduno.com/post/8421458

DeepLogo

  • intro: A brand logo recognition system using deep convolutional neural networks.
  • github: github.com/satojkovic/D

Deep-Leafsnap

  • intro: LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.
  • github: github.com/sujithv28/De

FaceVerification: An Experimental Implementation of Face Verification, 96.8% on LFW

  • github: github.com/happynear/Fa

InsightFace

  • intro: Face Recognition Project on MXnet
  • arxiv: github.com//deepinsight

OpenFace

OpenFace: Face Recognition with Deep Neural Networks

  • homepage: cmusatyalab.github.io/o
  • github: github.com/cmusatyalab/
  • github: github.com/aybassiouny/

OpenFace 0.2.0: Higher accuracy and halved execution time

  • homepage: bamos.github.io/2016/01

OpenFace: A general-purpose face recognition library with mobile applications

  • paper: reports-archive.adm.cs.cmu.edu

OpenFace: an open source facial behavior analysis toolkit

  • intro: a state-of-the art open source tool intended for facial landmark detection, head pose estimation,

    facial action unit recognition, and eye-gaze estimation.
  • github: github.com/TadasBaltrus

Resources

Face-Resources

  • github: github.com/betars/Face-

Created by ruyiwei on 10/04/2018.

推薦閱讀:

「人可貌相」:AI如何與你心有靈犀
這種電話別再接 或被盜用人臉識別危及支付賬戶

TAG:人臉識別 |