經典CNN模型+經典圖像語義分割模型總結
08-10
經典CNN模型+經典圖像語義分割模型總結
5 人贊了文章
Base Network
- LeNet:LeCun et.al., 1998. Gradient-based learning applied to document recognition
- AlexNet:Krizhevsky et al.,2012. ImageNet classification with deep convolutional neural networks
- NIN:Lin et al., 2013. Network in network
- VGG:Simonvan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition
- GoogleNet/Inception V1:Szegedy et al., 2014, Going Deeper with Convolutions
- Inception V2 :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
- Inception V3 :Rethinking the Inception Architecture for Computer Vision
- Inception V4 :Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
- Xception:https://arxiv.org/abs/1610.02357
- ResNet:He et al., 2015. Deep residual networks for image recognition
- ResNeXt
- DenseNet
- Wide ResNet
- DPNet
- NASNet
- SENet
- Capsules
Semantic Segmentation
1、FCN系列:
- FCN:Fully Convolutional Networks for Semantic Segmentation:https://arxiv.org/pdf/1411.4038.pdf
- UNet: Convolutional Networks for Biomedical Image Segmentation:https://arxiv.org/pdf/1505.04597.pdf
- DeconvNet:Learning Deconvolution Network for SemanticSegmentation:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf
2、SegNet(segnet erfnet)系列:
- Enet
- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation:https://arxiv.org/pdf/1511.00561.pdf
3、PSPNet(ICNet)系列:
- PSPNet:Pyramid Scene Parsing Network:https://arxiv.org/pdf/1612.01105.pdf
- ICNet:ICNet for Real-Time Semantic Segmentation on High-Resolution Images
4、Deeplab系列:
- deeplab v1:Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs:https://arxiv.org/pdf/1412.7062.pdf
- deeplab v2:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs:https://arxiv.org/pdf/1606.00915.pdf
- deeplab v3:Rethinking Atrous Convolution for Semantic Image Segmentation:https://arxiv.org/pdf/1706.05587.pdf
- deeplab v3+:
5、Dilated Convolutions:
- Dilated Convolutions:Multi-Scale Context Aggregation by Dilated Convolutions:https://arxiv.org/pdf/1511.07122.pdf
6、RefineNet
- RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation:https://arxiv.org/pdf/1611.06612.pdf
7、Large Kernel MAtters
- Large Kernel Matters:Improve Semantic Segmentation by Global Convolutional Network:https://arxiv.org/pdf/1703.02719.pdf
8、Mask R-CNN
- Mask R-CNN:https://arxiv.org/pdf/1703.06870.pdf
推薦閱讀: