難倒牛頓、仍懸而未決,這就是量子世界著名的「三體問題」
出品:科普中國
製作:中國科學院數學與系統科學研究院黃逸文
監製:中國科學院計算機網路信息中心
浩瀚的宇宙繁星點點,人們自古以來就對那些在夜空中閃爍的星星充滿嚮往和渴望。中國古代就有嫦娥奔月、牛郎織女牽手銀河的動人傳說。文藝復興時期的義大利文學巨匠但丁在《神曲》里將光芒四射的星星描述為永享天國福音者的聖地。
對星空的仰望與敬畏,使得古人通過觀察日月星辰的變化看懂了世界的運轉規律,並由此建立了延續至今的太陽曆和月亮歷。
在長達幾千年的星空記錄中,人們積累了豐富的觀察數據。直到歷史的車輪停在了17世紀初期,開普勒通過對恆星的運動路徑進行艱苦卓絕地觀察、記錄和分析後,提出了著名的開普勒三大定律,為後人指明了天體運動的規則,人們對星體的興趣也越發盎然。遺憾地是,這一基於實際觀測得出的結果並沒有相應的理論體系。
開普勒(圖片來源於網路)
在開普勒的啟發下,牛頓開始著力尋找行星規則運動背後的成因。事實上,早在數千年前,古人即著迷於多顆星球在太空中彼此環繞的現象,只是受限於理論和觀察手法、工具的缺失而只能藉助於美好的傳說。多顆星球在太空中的運動軌跡問題,也被後世簡稱為N體問題。這裡N代表星球的個數。
最簡單的情況就是,兩顆星星彼此環繞的雙星問題,又被稱為開普勒問題,在1710年被數學家伯努利解決。他認為一顆星球圍繞另外一顆星球運動的軌跡只能是橢圓、拋物線或者雙曲線的一支。然而對這一問題的完整數學描述卻並非易事。牛頓為了計算天體的運動軌跡,特別是太陽系內各大行星的運動規律,提出了驚世駭俗的萬有引力定律,並為此發明了微積分,才讓雙體問題得到徹底解決。
在此之後,牛頓將目光投射到更高的N體問題上。一個司空見慣的例子就是太陽、月亮和地球的運動。然而,這個問題的難度卻遠遠超越牛頓的想像,直到兩百多年後的今天,它依然是懸而未決的天文難題之一。這就是著名的三體問題。
對三體問題的重大突破和認識,更是被認為20世紀僅次於相對論和量子力學的第三大基礎科學進展。
宇宙中的三體問題(圖片來源於網路)
在牛頓之後的200多年間,歐拉、拉格朗日、拉普拉斯都為三體問題傾注了大量精力和才華。令人唏噓的是,太陽升起複又落下,月亮高懸繼而沉淪,三體問題在前人日復一日的研究中卻展現出愈來愈驚人的複雜性。人類歷史上最傑出的大腦都在此折戟受挫。如果我們對太陽、月亮和地球的命運都一無所知,又何來對宇宙的掌控和認知?
鑒於三體問題無法逾越的難度,人們轉而求解一些簡化的三體問題,即所謂的限制性三體問題。
比如星空中有兩顆大質量的天體相互繞轉,還有第三顆質量幾乎忽略不計的小天體也處於其中,僅僅受到兩顆大天體的引力影響。這和太陽、地球與月亮的情景類似。
拉格朗日首先在這個問題上有了重大突破,他找到了幾個有限的特解。其中一個特解預測:如果小質量天體和兩個較大天體的位置構成一個等邊三角形,則此類三體的解是穩定的。100多年後,天文學家在太陽系裡真的找到了實例,在特洛伊小行星群上有一組行星和太陽、木星恰好構成了等邊三角形。
拉格朗日的發現給了人們極大的信心,特解揭示了三體運動的一種規律,也為尋找通解指明了方向。1885年,瑞典國王奧斯卡二世懸賞徵求太陽系的穩定性問題的解答。法國數學家龐加萊參與到了這場三體問題的研究中來。
事與願違的是,他發現三體問題和雙星問題截然不同,它的解異常複雜和詭異,天體的運動可以變得非常混亂和無規則。雖然沒有解決這個問題,卻終於觸及到世界深處的本質-混沌。龐加萊也因此獲得了奧斯卡二世的大獎。
原來,龐加萊發現:三體系統中,對於給定的初始條件,幾乎沒有辦法預測當時間趨於無窮時,這個系統的最終命運。初始系統的數據只要經歷一點點地改變,未來天體的運行狀況也會有翻天覆地的不同,因此預測未來將導致巨大的災難。現實中,人們的觀測總有誤差,基於誤差判斷天體的命運會因為初始數據的波動而「差之毫釐,謬以千里」。不僅如此,人們做近似計算模擬的想法也幾乎破滅。這就是「混沌」導致的混亂。
「科普中國」是中國科協攜同社會各方利用信息化手段開展科學傳播的科學權威品牌。
本文由科普中國融合創作出品,轉載請註明出處。
推薦閱讀:
※如果量子理論都是正確的,是不是人生就毫無意義了?
※通往人工智慧未來的三路競賽:量子vs.神經形態vs.高性能計算
※量子糾纏
※龍愛量子依舊平安?
※潘建偉:孩子睡前故事可以瞎掰,科研必須一絲不苟