教程推薦 | 機器學習、Python等最好的150餘個教程
07-04
教程推薦 | 機器學習、Python等最好的150餘個教程
來自專欄從零學AI
儘管機器學習的歷史可以追溯到1959年,但目前,這個領域正以前所未有的速度發展。最近,我一直在網上尋找關於機器學習和NLP各方面的好資源,為了幫助到和我有相同需求的人,我整理了一份迄今為止我發現的最好的教程內容列表。
通過教程中的簡介內容講述一個概念。避免了包括書籍章節涵蓋範圍廣,以及研究論文在教學理念上做的不好的特點。
我把這篇文章分成四個部分:機器學習、NLP、Python和數學。每個部分中都包含了一些主題文章,但是由於材料巨大,每個部分不可能包含所有可能的主題,我將每個主題限制在5到6個教程中。
機器學習
- Machine Learning is Fun! (http://medium.com/@ageitgey)
- Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
- An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (http://toptal.com)
- A Gentle Guide to Machine Learning (http://monkeylearn.com)
- Which machine learning algorithm should I use? (http://sas.com)
激活和損失函數
- Sigmoid neurons (http://neuralnetworksanddeeplearning.com)
- What is the role of the activation function in a neural network? (http://quora.com)
- Comprehensive list of activation functions in neural networks with pros/cons(http://stats.stackexchange.com)
- Activation functions and it』s types-Which is better? (http://medium.com)
- Making Sense of Logarithmic Loss (http://exegetic.biz)
- Loss Functions (Stanford CS231n)
- L1 vs. L2 Loss function (http://rishy.github.io)
- The cross-entropy cost function (http://neuralnetworksanddeeplearning.com)
Bias
- Role of Bias in Neural Networks (http://stackoverflow.com)
- Bias Nodes in Neural Networks (http://makeyourownneuralnetwork.blogspot.com)
- What is bias in artificial neural network? (http://quora.com)
感知器
- Perceptrons (http://neuralnetworksanddeeplearning.com)
- The Perception (http://natureofcode.com)
- Single-layer Neural Networks (Perceptrons) (dcu.ie)
- From Perceptrons to Deep Networks (http://toptal.com)
回歸
- Introduction to linear regression analysis (http://duke.edu)
- Linear Regression (http://ufldl.stanford.edu)
- Linear Regression (http://readthedocs.io)
- Logistic Regression (http://readthedocs.io)
- Simple Linear Regression Tutorial for Machine Learning(http://machinelearningmastery.com)
- Logistic Regression Tutorial for Machine Learning(http://machinelearningmastery.com)
- Softmax Regression (http://ufldl.stanford.edu)
梯度下降演算法
- Learning with gradient descent (http://neuralnetworksanddeeplearning.com)
- Gradient Descent (http://iamtrask.github.io)
- How to understand Gradient Descent algorithm (http://kdnuggets.com)
- An overview of gradient descent optimization algorithms(http://sebastianruder.com)
- Optimization: Stochastic Gradient Descent (Stanford CS231n)
生成式學習
- Generative Learning Algorithms (Stanford CS229)
- A practical explanation of a Naive Bayes classifier (http://monkeylearn.com)
支持向量機
- An introduction to Support Vector Machines (SVM) (http://monkeylearn.com)
- Support Vector Machines (Stanford CS229)
- Linear classification: Support Vector Machine, Softmax (Stanford 231n)
反向傳播
- Yes you should understand backprop (http://medium.com/@karpathy)
- Can you give a visual explanation for the back propagation algorithm for neural - networks? (http://github.com/rasbt)
- How the backpropagation algorithm works(http://neuralnetworksanddeeplearning.com)
- Backpropagation Through Time and Vanishing Gradients (http://wildml.com)
- A Gentle Introduction to Backpropagation Through Time(http://machinelearningmastery.com)
- Backpropagation, Intuitions (Stanford CS231n)
深度學習
- Deep Learning in a Nutshell (http://nikhilbuduma.com)
- A Tutorial on Deep Learning (Quoc V. Le)
- What is Deep Learning? (http://machinelearningmastery.com)
- What』s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (http://nvidia.com)
優化和降維
- Seven Techniques for Data Dimensionality Reduction (http://knime.org)
- Principal components analysis (Stanford CS229)
- Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
- How to train your Deep Neural Network (http://rishy.github.io)
長短期記憶網路
- A Gentle Introduction to Long Short-Term Memory Networks by the Experts(http://machinelearningmastery.com)
- Understanding LSTM Networks (http://colah.github.io)
- Exploring LSTMs (http://echen.me)
- Anyone Can Learn To Code an LSTM-RNN in Python (http://iamtrask.github.io)
卷積神經網路
- Introducing convolutional networks (http://neuralnetworksanddeeplearning.com)
- Deep Learning and Convolutional Neural Networks(http://medium.com/@ageitgey)
- Conv Nets: A Modular Perspective (http://colah.github.io)
- Understanding Convolutions (http://colah.github.io)
遞歸神經網路
- Recurrent Neural Networks Tutorial (http://wildml.com)
- Attention and Augmented Recurrent Neural Networks (distill.pub)
- The Unreasonable Effectiveness of Recurrent Neural Networks(http://karpathy.github.io)
- A Deep Dive into Recurrent Neural Nets (http://nikhilbuduma.com)
強化學習
- Simple Beginner』s guide to Reinforcement Learning & its implementation(http://analyticsvidhya.com)
- A Tutorial for Reinforcement Learning (http://mst.edu)
- Learning Reinforcement Learning (http://wildml.com)
- Deep Reinforcement Learning: Pong from Pixels (http://karpathy.github.io)
生成對抗網路
- What』s a Generative Adversarial Network? (http://nvidia.com)
- Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(http://medium.com/@ageitgey)
- An introduction to Generative Adversarial Networks (with code in - TensorFlow) (http://aylien.com)
- Generative Adversarial Networks for Beginners (http://oreilly.com)
多任務學習
- An Overview of Multi-Task Learning in Deep Neural Networks(http://sebastianruder.com)
自然語言處理
- A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
- The Definitive Guide to Natural Language Processing (http://monkeylearn.com)
- Introduction to Natural Language Processing (http://algorithmia.com)
- Natural Language Processing Tutorial (http://vikparuchuri.com)
- Natural Language Processing (almost) from Scratch (http://arxiv.org)
深入學習和NLP
- Deep Learning applied to NLP (http://arxiv.org)
- Deep Learning for NLP (without Magic) (Richard Socher)
- Understanding Convolutional Neural Networks for NLP (http://wildml.com)
- Deep Learning, NLP, and Representations (http://colah.github.io)
- Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
- Understanding Natural Language with Deep Neural Networks Using Torch(http://nvidia.com)
- Deep Learning for NLP with Pytorch (http://pytorich.org)
詞向量
- Bag of Words Meets Bags of Popcorn (http://kaggle.com)
- On word embeddings Part I, Part II, Part III (http://sebastianruder.com)
- The amazing power of word vectors (http://acolyer.org)
- word2vec Parameter Learning Explained (http://arxiv.org)
- Word2Vec Tutorial?—?The Skip-Gram Model, Negative Sampling(http://mccormickml.com)
Encoder-Decoder
- Attention and Memory in Deep Learning and NLP (http://wildml.com)
- Sequence to Sequence Models (http://tensorflow.org)
- Sequence to Sequence Learning with Neural Networks (NIPS 2014)
- Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (http://medium.com/@ageitgey)
- How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(http://machinelearningmastery.com)
- tf-seq2seq (http://google.github.io)
Python
- 7 Steps to Mastering Machine Learning With Python (http://kdnuggets.com)
- An example machine learning notebook (http://nbviewer.jupyter.org)
例子
- How To Implement The Perceptron Algorithm From Scratch In Python(http://machinelearningmastery.com)
- Implementing a Neural Network from Scratch in Python (http://wildml.com)
- A Neural Network in 11 lines of Python (http://iamtrask.github.io)
- Implementing Your Own k-Nearest Neighbour Algorithm Using Python(http://kdnuggets.com)Demonstration of Memory with a Long Short-Term Memory Network in - Python (http://machinelearningmastery.com)
- How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (http://machinelearningmastery.com)
- How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(http://machinelearningmastery.com)
Scipy和numpy
- Scipy Lecture Notes (http://scipy-lectures.org)
- Python Numpy Tutorial (Stanford CS231n)
- An introduction to Numpy and Scipy (UCSB CHE210D)
- A Crash Course in Python for Scientists (http://nbviewer.jupyter.org)
scikit-learn
- PyCon scikit-learn Tutorial Index (http://nbviewer.jupyter.org)
- scikit-learn Classification Algorithms (http://github.com/mmmayo13)
- scikit-learn Tutorials (http://scikit-learn.org)
- Abridged scikit-learn Tutorials (http://github.com/mmmayo13)
Tensorflow
- Tensorflow Tutorials (http://tensorflow.org)
- Introduction to TensorFlow?—?CPU vs GPU (http://medium.com/@erikhallstrm)
- TensorFlow: A primer (http://metaflow.fr)
- RNNs in Tensorflow (http://wildml.com)
- Implementing a CNN for Text Classification in TensorFlow (http://wildml.com)
- How to Run Text Summarization with TensorFlow (http://surmenok.com)
PyTorch
- PyTorch Tutorials (http://pytorch.org)
- A Gentle Intro to PyTorch (http://gaurav.im)
- Tutorial: Deep Learning in PyTorch (http://iamtrask.github.io)
- PyTorch Examples (http://github.com/jcjohnson)
- PyTorch Tutorial (http://github.com/MorvanZhou)
- PyTorch Tutorial for Deep Learning Researchers (http://github.com/yunjey)
數學
- Math for Machine Learning (http://ucsc.edu)
- Math for Machine Learning (UMIACS CMSC422)
線性代數
- An Intuitive Guide to Linear Algebra (http://betterexplained.com)
- A Programmer』s Intuition for Matrix Multiplication (http://betterexplained.com)
- Understanding the Cross Product (http://betterexplained.com)
- Understanding the Dot Product (http://betterexplained.com)
- Linear Algebra for Machine Learning (U. of Buffalo CSE574)
- Linear algebra cheat sheet for deep learning (http://medium.com)
- Linear Algebra Review and Reference (Stanford CS229)
概率
- Understanding Bayes Theorem With Ratios (http://betterexplained.com)
- Review of Probability Theory (Stanford CS229)
- Probability Theory Review for Machine Learning (Stanford CS229)
- Probability Theory (U. of Buffalo CSE574)
- Probability Theory for Machine Learning (U. of Toronto CSC411)
微積分
- How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (http://betterexplained.com)
- How To Understand Derivatives: The Product, Power & Chain Rules(http://betterexplained.com)
- Vector Calculus: Understanding the Gradient (http://betterexplained.com)
- Differential Calculus (Stanford CS224n)
- Calculus Overview (http://readthedocs.io)
原文鏈接https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd78
《機器學習 第九期》從零到機器學習實戰項目,提供GPU&CPU雙雲平台,作業考試1V1批改(優秀學員內推BAT等);點擊文末「閱讀原文」了解詳情
http://weixin.qq.com/r/NDjo8E3EtRDKrQmT920m (二維碼自動識別)
推薦閱讀:
※Fenchel-Lengendre Duality觀點下的優化演算法們(I):前言
※生成對抗網路
※機器學習的數學基礎-(未完待續)
※在CentOS 7下搭建機器學習環境
※你也也可以搭建自己的深度學習框架