韋依猜想
來自專欄數學沉思錄
韋依猜想的驚人之處在於,它給出了代數幾何與拓撲之間的聯繫,它隱含著的洞察力所激發的巨大期望就是拓撲空間的上同調方法可以適用於簇與概形。這個期望在很大程度上由Grothendieck及其合作者的工作實現了。
1949年,由於受到黎曼關於Zeta函數的工作的啟發,韋依研究了定義於有限域 上的代數簇 的Zeta函數 和 ,以計算 在 域上的有理點的個數 。在曲線和阿貝爾簇兩種情況下,韋依證明了 滿足性質:
- 是有理函數.
- 滿足函數方程.
- 零點有某種特定的形式. 這是經典黎曼假設的類比.
韋依猜想是問,對於一般射影非奇異代數簇上的Zeta函數,這些性質是否還成立. 這些猜想揭示了有限域上定義的代數簇的算術和復代數簇的拓撲之間的一個深刻聯繫。
韋依猜想為何重要?
我心目中的英雄,證明黎曼假設的男人——Pierre Deligne是這樣說的:
There were some previous theorems of Weil about curves in the one-dimensional situation. There are many analogies between algebraic curves over finite fields and the rational numbers. Over the rational numbers, the central question is the Riemann hypothesis. Weil had proved the analogue of the Riemann hypothesis for curves over finite fields, and he had looked at some higher-dimensional situations as well. This was at the time where one started to understand the cohomology of simple algebraic varieties, like the Grassmannians. He saw that some point-counting for objects over finite fields reflected what happened over the complex numbers and the shape of the related space over the complex numbers.
As Weil looked at it, there are two stories hidden in the Weil conjectures. First, why should there be a relation between apparently combinatorial questions and geometric questions over the complex numbers. Second, what is the analogue of the Riemann hypothesis? Two kinds of applications came out of these analogies. The first started with Weil himself: estimates for some arithmetical functions. For me, they are not the most important. Grothendieck』s construction of a formalism explaining why there should be a relation between the story over the complex numbers, where one can use topology, and the combinatorial story, is more important.Secondly, algebraic varieties over finite fields admit a canonical endomorphism, the Frobenius. It can be viewed as a symmetry, and this symmetry makes the whole situation very rigid. Then one can transpose this information back into the geometric world over the complex numbers, it yields constraints on what will happen in classical algebraic geometry, and this is used in applications to representation theory and the theory of automorphic forms. It was not obvious at first that there would be such applications, but for me they are the reason why the Weil conjecture is important.
韋依猜想的陳述
設 是 的代數閉包, 是 在 的整閉包.
(韋依猜想)設 是 上的 維光滑射影簇,則
- (有理性)Zeta函數 是一個有理函數,即 . 更精確地, 可寫成如下有限交錯積的形式: 其中 和 ,而對於 , 是整係數多項式,並且 在 中可分解為 , .
- (函數方程和龐加萊對偶)Zeta函數 滿足如下函數方程: 其中 和 是 的歐拉示性數. 等價地,如果令 和 ,則 和 .
- (黎曼假設)對所有的 有 .
- (Betti數)若 是定義於某代數整數環 上的光滑射影簇 的「模 約化」,則對 , 的次數 為 的Betti數.
註記:黎曼假設(3)是說 的極點在直線 上,零點在直線 上. 特別地,設 是一條光滑的代數曲線,則 的零點滿足 . 這就是稱(3)是「黎曼假設」的原因.
假設韋依猜想成立,我們將可以計算 在 域上的有理點的個數 :
(推論)設 是 上的 維光滑射影簇,則
其中
- 對 , 滿足 .事實上,這裡的 是 -進上同調群的Betti數.
- 對任意的 有 滿足 .
- (黎曼假設)對所有的 有 .
例1:考慮 -維射影空間 .
直接計算可得
例2:考慮有限域 上的虧格為 的曲線 .
由Riemann-Roch定理可知
其中
.
更近一步, 滿足函數方程
設 ,可以證明 的 -進Betti數為
韋依猜想告訴我們 和 (對 ),使得對所有 有
這推知(Hasse-Weil bound)
算術 拓撲
欲知後事如何,請聽下回分解
韋依猜想的上同調解釋推薦閱讀:
※導出範疇如何決定代數簇的結構?
※歐拉公式中歐拉示性數是什麼?
※趣味智力題|數學智力題
※為什麼我已經做好了末地傳送門卻不可以傳送去末地?
※幼兒「卡通數獨」大全,可愛到讓孩子愛上數學!