合成生物學
目錄 | 1基本介紹 2發展歷史 | 3理論背景 4相關應用 |
---|
- 1 基本介紹
- 2 發展歷史
- 3 理論背景
- 4 相關應用
回到頂部 意見反饋 基本介紹 摺疊 編輯本段
合成生物學是生物科學在二十一世紀剛剛出現的一個分支學科,近年來合成生物物質的研究進展很快。與傳統生物學通過解剖生命體以研究其內在構造的辦法不同,合成生物學的研究方向完全是相反的,它是從最基本的要素開始一步步建立零部件。與基因工程把一個物種的基因延續、改變並轉移至另一物種的作法不同,合成生物學的目的在於建立人工生物系統(artificial biosystem),讓它們像電路一樣運行。
2004年6月在美國麻省理工學院舉行了第一屆合成生物學國際會議。研究合成生物學的科學家們預言,合成生物學可以通過修復細胞功能,消除腫瘤、刺激細胞生長和使某些決定性細胞再生,實現治療各種疾病的目的。本次會議意在對這一剛剛出現不久的生物學前沿進行探討。研討合成生物學關鍵科學問題和可能的應用領域。
發展歷史 摺疊 編輯本段合成生物學(synthetic biology),最初由Hobom B.於1980年提出來表述基因重組技術,隨著分子系統生物學的發展,2000年E. Kool重新提出來定義為基於系統生物學的遺傳工程,從基因片段、人工鹼基DNA分子、基因調控網路與信號傳導路徑到細胞的人工設計與合成,類似於現代集成型建築工程,將工程學原理與方法應用於遺傳工程與細胞工程等生物技術領域,合成生物學、計算生物學與化學生物學一同構成系統生物技術的方法基礎。
合成生物學是指人們將「基因」連接成網路,讓細胞來完成設計人員設想的各種任務。例如把網路同簡單的細胞相結合,可提高生物感測性,幫助檢查人員確定地雷或生物武器的位置。再如向網路加入人體細胞,可以製成用於器官移植的完整器官。讓·維斯是麻省理工學院計算機工程師,早在他讀研究生時就迷上了生物學,並開始為細胞「編程」,現在已成為合成生物學的領軍人物。維斯的導師、計算機工程師和生物學家湯姆·奈特表示,他們希望研製出一組生物組件,可以十分容易地組裝成不同的「產品」。
目前,研究人員正在試圖控制細胞的行為,研製不同的基因線路———即特別設計的、相互影響的基因。波士頓大學生物醫學工程師科林斯已研製出一種「套環開關」,所選擇的細胞功能可隨意開關。加州大學生物學和物理學教授埃羅維茨等人研究出另外一種線路:當某種特殊蛋白質含量發生變化時,細胞能在發光狀態和非發光狀態之間轉換,起到有機振蕩器的作用,打開了利用生物分子進行計算的大門。
維斯和加州理工學院化學工程師阿諾爾一起,採用「定向進化」的方法,精細調整研製線路,將基因網路插入細胞內,有選擇性地促進細胞生長。維斯目前正在研究另外一群稱為「規則系統」的基因,他希望細菌能估計刺激物的距離,並根據距離的改變做出反應。該項研究可用來探測地雷位置:當它們靠近地雷時細菌發綠光;遠離地雷時則發紅光。維斯另一項大膽的計劃是為成年幹細胞編程,以促進某些幹細胞分裂成骨細胞、肌肉細胞或軟骨細胞等,讓細胞去修補受損的心臟或生產出合成膝關節。儘管該工作尚處初級階段,但卻是生物學調控領域中重要的進展。
「合成生物學」更早可追蹤到波蘭科學家Waclaw Szybalski採用「合成生物學」術語,以及目睹分子生物學進展、限制性內切酶發現等可能導致合成生物體的預測。「系統生物學」則可追蹤到貝塔朗菲的「有機生物學」及定義「有機」為「整體或系統」概念,以及闡述採用開放系統論、數學模型與計算機方法研究生物學。
隨著計算機、生物信息、基因合成與基因測序等技術的進展,使計算機輔助設計、全基因乃至基因組人工合成成為可能,使生物工程產業化的技術瓶頸可能突破,使生物產業能夠進入工程化與設計化的產業發展,導致了有如「系統科學與自動通訊技術」之間的理論研究與技術轉化互動,系統科學與生物技術、系統生物學與合成生物學之間的密切互動,也將導致系統生物技術的基礎研究嚮應用開發的轉化(轉化科學、轉化生物學)距離迅速縮短。
理論背景 摺疊 編輯本段依據自組織系統結構理論- 泛進化論(structurity, structure theory, pan-evolution theory),從實證到綜合(synthetic )探討天然與人工進化的生物系統理論,闡述了結構整合(integrative)、調適穩態與建構(constructive)層級等規律;因此,系統(systems)生物學也稱為「整合(integrative biology)生物學」,合成(synthetic)生物學又叫「建構生物學(constructive biology)」(Zeng BJ.中譯)。系統與合成生物學的系統結構、發生動力與磚塊建構、工程設計等基於結構理論原理,從電腦技術的系統科學理論到遺傳工程的系統科學方法,是將物理科學、工程技術原理與方法貫徹到細胞、遺傳機器與細胞通訊技術等納米層次的生物分子系統分析與設計。
合成生物學(synthetic biology),也可翻譯成綜合生物學,即綜合集成,「synthetic」在不同地方翻譯成不同中文,比如綜合哲學(synthetic philosophy)、「社會-心理-生物醫學模式」的綜合(synthetic)醫學(genbrain biosystem network - 中科院曾邦哲1999年建於德國,探討生物系統分析學「biosystem analysis」與人工生物系統「artificial biosystem」,包括實驗、計算、系統、工程研究與應用),同時也被歸屬為人工生物系統研究的系統生物工程技術範疇,包括生物反應器與生物計算機開發。
「21世紀是系統生物科學與工程 - 也就是生物系統分析學與人工生物系統的時代,將帶來未來的科技與產業革命」。系統(system)、整合(integrative)、合成(synthetic)或綜合生物學各有偏重點,系統(system)、結構(structure)、圖式(patten)遺傳學也存在偏重點,但整個屬於系統生物科學與工程領域。系統科學方法與原理源自坎農的生理學穩態機理和圖靈的計算機模型及圖式發生的研究,又應用於生物科學與工程。計算機科學中的圖形識別被翻譯成「模式」,但生物學中又有將「model animal」翻譯成模式動物,在認知心理學和發育生物學中也有的翻譯成「圖式」;因此,綜合翻譯成「圖式」(patten),而且也包括了「系統(scheme或system)」與「完形(gestalt或configuration)」等含意。
21世紀伊始,進入了系統生物學與工程迅速發展的時代,而系統遺傳學與合成生物學(系統遺傳工程或轉基因系統生物技術)是其核心,並將帶來的是系統醫學與生物工業革命。1997年曾邦哲(Zeng BJ.)設計與操作的一個典型的系統生物學非加和性抗藥細胞實驗:CHO細胞用化學誘變劑甲磺酸乙脂處理一次篩選到抗10uM和20uM洛伐他汀的細胞系,再用甲磺酸乙脂處理一次抗10uM洛伐他汀的突變細胞系篩選到高到可抗70uM洛伐他汀的細胞系,70uM遠大於2X20uM=40uM,說明基因與基因的相互作用是非加和性的,也就是系統遺傳學的經典實驗。
相關應用 摺疊 編輯本段
合成生物學將催生下一次生物技術革命。目前,科學家們已經不局限於非常辛苦地進行基因剪接,而是開始構建遺傳密碼,以期利用合成的遺傳因子構建新的生物體。合成生物學在未來幾年有望取得迅速進展。據估計,合成生物學在很多領域將具有極好的應用前景,這些領域包括更有效的疫苗的生產、新葯和改進的藥物、以生物學為基礎的製造、利用可再生能源生產可持續能源、環境污染的生物治理、可以檢測有毒化學物質的生物感測器等。
儘管合成生物學的商業應用多數還要幾年以後才能實現,但現在研究人員已經在利用合成生物體來研製下一代清潔的可再生生物燃料以及某些稀缺的藥物。第一代合成微生物是合成生物學的簡單應用,它們可能與目前利用DNA重組的微生物類似,其風險評估或許不成問題,因此,對立法者的挑戰較少。但隨著合成生物學技術不斷走向成熟,又可能研製出複雜的有機體,其基因組可能由各種基因序列(包括實驗室設計和研製的人工基因序列)重組而成。儘管其風險和風險評估問題與經過基因修飾的生物體引發的問題類似,但對於這類複雜的合成微生物來說,找到上述問題的答案要困難得多。
在轉基因生物技術方面,立法者對轉基因生物體進行風險評估時,一般是通過將轉基因生物體與為人們所熟知的同類的非轉基因生物進行比較分析,從而認識增加的遺傳物質的功能。立法者通過將自然存在的物種與轉基因物種進行比較,來確保新的有機體像其傳統的同類物質「一樣安全」。
但是,對於通過合成生物學製成的複雜的有機體而言,如果它是由各種來源的遺傳序列組合而成或者含有人工DNA,就很難確定其「遺傳譜系」。另外,重組後的遺傳序列是否保留其原有的功能,或者新組分之間是否會產生協同反應從而導致不同的功能或行為也是個問題。隨著對有關遺傳成分的認識的增加,科學家們也許可以預測新的遺傳改造所具有的功能,但是,由來自合成和自然物質的遺傳成分合成的有機體可能會表現出原來沒有過的「新行為」。先進的合成微生物的複雜性給根據遺傳序列和結構進行功能預測增加了新的不確定性。現有的風險評估方法無法用來預測複雜的適應系統。此外,儘管許多科學家認為轉基因生物體在自然環境中可能無法生存或繁殖,但合成有機體可以發生變異和進化,這引起了人們的擔憂,擔心它們如果釋放到環境中,其遺傳物質可能擴散到其它有機體,或者與其它有機體交換遺傳物質。這種風險同樣與轉基因生物引發的風險類似,只是要預先評估將來開發的複雜的合成生物體的風險更為困難。
合成生物學無疑會推動生物燃料、特種化學品、農業和藥物等方面的進步。但這個新興領域的進一步發展對政府的監管提出了嚴峻挑戰。科學家們已經開始關注合成生物學研究的風險問題。最受關注的莫過於生物安全問題。合成生物學的早期應用引發的安全性問題應予以重視。像其它新技術一樣,合成生物學對決策者提出了挑戰。政府在制定政策時必須做出權衡,一方面是如何收穫新產品的利益,另一方面是如何預防對環境和公共健康的潛在危害。目前,人們普遍認為,針對遺傳工程制定的政策和法規是制定面向合成生物學的政策法規時可以效仿的。在這項新技術成熟之前,決策者應考慮如何對這項新興的融合技術進行約束。由於合成生物學的不確定性,立法者面臨的挑戰是如何制定決策,使對合成生物體的管制既不能過松,也不能過嚴。因此,亟需在產品開發的同時開展風險研究。毋庸置疑,一般性研究是很有用的,但很多情況下,必須針對具體的生物體、產品和應用進行風險研究。
與傳統生物學通過解剖生命體以研究其內在構造的辦法不同的是,合成生物學的研究方向完全是相反的:它是從最基本的要素開始一步步建立零部件。重塑生命,這正是合成生物學這一新興科學的核心思想。該學科致力於從零開始建立微生物基因組,從而分解、改變並擴展自然界在35億年前建立的基因密碼。此外,還可以通過人工方式迫使某一細菌合成氨基酸。合成生物學是基因工程中一個剛剛出現的分支學科,它吸引了大批的生物學家和信息工程師致力於此項研究。
人類正在設計並構建一些可以按照預定方式存在的生命體系。在有些情況下,它們是依靠人工開發的基因密碼運行的,因此它們具備了某些自然機體不具備的能力,美國馬薩諸塞州技術研究所合成生物學小組負責人德魯·恩迪解釋說。與基因工程把一個物種的基因延續、改變並轉移至另一物種的作法不同,合成生物學的目的在於建立人工生物體系,讓它們像電路一樣運行。與傳統生物學通過解剖生命體以研究其內在構造的辦法不同的是,合成生物學的研究方向完全是相反的,它是從最基本的要素開始一步步建立零部件。「所謂合成,就是由我們建立各個活的部件,是逆自然世界的一個過程」。研究合成生物學的科學家們預言,合成生物學的成功將意味著科學的極大進步。美國加利福尼亞大學蛋白質研究工程師溫德爾·利姆認為,合成生物學通過修復細胞功能、消除腫瘤、刺激細胞生長和使某些決定性細胞再生,實現治療各種疾病的目的。
一些專家提出應該製造一個配備有生物晶元的細胞機器人,讓它在我們的動脈中遊盪,檢測並消除導致血栓的動脈粥樣硬化。還有一些研究人員認為,運用合成生物學還可以製成各種各樣的細菌,用來消除水污染、清除垃圾、處理核廢料等。恩迪還提出,可製造一種生物機器用來探測化學和生物武器,發出爆炸物警告,甚至可以從太陽中獲取能量,用來製造清潔燃料。但是也有一些謹慎的研究人員認為,合成生物學存在某些潛在危險,它會顛覆納米技術和傳統基因工程學的概念。如果合成生物學提出的創建新生命體的設想得以實現,科學家們就必須有效防止這一技術的濫用,防止生物倫理衝突以及一些現在還無法預知的災難。
2002年,紐約大學的病毒學家埃卡德·維默爾宣布他和他的研究小組從生物技術公司購買了DNA短小片斷,並在DNA合成公司的協助下將它們連接起來,製造出了人工合成的脊髓灰質炎病毒。這項研究的成功讓維默爾完成了一項前人從未完成的工作。但他同時向人們發出警告,生物恐怖主義分子完全有能力製造出致命病毒,例如埃博拉病毒、天花病毒以及一切目前人們擁有的藥物均無法消滅的病毒。
推薦閱讀:
※腦震蕩和腦損傷: 攝入ω-3脂肪酸有助於恢復腦部健康
※癲癇對中老年人有哪些危害?
※女神越活越年輕的奧秘,生物學諾獎得主告訴你 | 遠讀
※生物真的只是一種演算法嗎——讀《未來簡史》
※體內轉染(Entranster)與mir-200c和乳腺癌細胞上皮間質轉化