液體活檢技術在非小細胞肺癌患者EGFR

液體活檢技術在非小細胞肺癌患者EGFR-TKI繼發耐葯中的應用 液體活檢技術在非小細胞肺癌患者EGFR-TKI繼發耐葯中的應用

林 鋮1, 姜 儻2

(1.杭州迪安醫學檢驗所,浙江 杭州 310030;2.中山大學附屬第一醫院,廣東 中山 510080)

摘要:作為非小細胞肺癌治療史上的里程碑,表皮生長因子受體(EGFR)-酪氨酸激酶抑製劑(TKI)的出現顯著延長了非小細胞肺癌患者的生存期,改善了患者的生存質量。亞洲的非小細胞肺癌患者EGFR基因的突變頻率遠高於白種人,將更加受益於EGFR-TKI藥物。然而,分子靶向藥物面臨的一個重要問題就是耐葯。這些最初受益於EGFR-TKI藥物的患者,其腫瘤最終都將再次發生進展,並且這種狀況往往發生在開始用藥後1年左右。由於EGFR-TKI的繼發耐葯,目前已相繼出現了3代EGFR-TKI藥物。在眾多耐葯機制中最受關注的耐葯突變就是EGFR T790M和C797S點突變。為了達到更好的治療效果,必須對使用EGFR-TKI藥物的患者進行繼發耐葯動態監測。組織活檢是癌症診斷的金標準,然而組織活檢由於存在操作風險較高、組織樣本獲得困難、無法實時檢測及腫瘤異質性等問題,無法對非小細胞肺癌患者進行動態監測。液體活檢是一種方便、快捷、具有較高可靠性、新興的非侵入性檢測方法,其通過檢測血液中循環腫瘤細胞(CTC)、循環腫瘤DNA(ctDNA)及腫瘤釋放出的外泌體,對腫瘤進行早期診斷、篩查、療效和預後評估以及耐葯監測等。文章綜述了EGFR-TKI藥物及液體活檢技術的發展現狀,並對液體活檢技術在非小細胞肺癌患者EGFR-TKI繼發耐葯中的應用進行簡評和展望。

關鍵詞:液體活檢;表皮生長因子受體;酪氨酸激酶抑製劑;非小細胞肺癌

肺癌是危害人類健康的重大疾病,是最常見的腫瘤相關性死亡的原因,並且在全球範圍內其發病率仍呈現上升趨勢。僅2015年,我國肺癌發病人數就達73.33萬,死亡人數達61.02萬[1-2]。肺癌的發病增加與現代社會人口老齡化加劇、城市工業化、環境污染及不良生活方式如吸煙等相關。約有50%的肺癌患者在確診後1年內死亡,5年生存率極低。按照組織學分型,可將肺癌分為小細胞肺癌及非小細胞肺癌,非小細胞肺癌又可繼續劃分為腺癌、鱗癌、大細胞分化癌及混合細胞肺癌,並且其發病率約佔所有肺癌的80%[3-4]。表皮生長因子受體(epidermal growth factor receptor,EGFR)-酪氨酸激酶抑製劑(tyrosine kinase inhibitor,TKI)的出現顯著延長了非小細胞肺癌患者的生存期,改善了患者的生存質量。然而,分子靶向藥物面臨的一個重要問題就是耐葯。由於EGFR-TKI的繼發耐葯,目前已經相繼出現3代EGFR-TKI藥物。為了達到更好的治療效果,使用EGFR-TKI藥物的患者必須對繼發耐葯進行動態監測。液體活檢是一種方便、快捷、具有較高可靠性、新興的非侵入性檢測方法。我們對液體活檢技術在非小細胞肺癌患者EGFR-TKI繼發耐葯中的應用進行了綜述。

一、非小細胞肺癌基因檢測的應用

隨著人類基因組計劃的完成,人類30億鹼基對的遺傳密碼已經初步得到破解,同時伴隨著分子生物學檢測技術,如聚合酶鏈反應(polymerase chain reaction,PCR)、熒光原位雜交(fluorescence in situ hybridization,FISH)、一代測序、二代測序等技術的逐步成熟,基因診斷已經在遺傳性疾病、腫瘤、感染性疾病、生育健康指導等多個領域中得到了廣泛應用,個體醫療已經進入「精準醫療」時代。目前,基因診斷已經被越來越多地用於指導腫瘤早期篩查、用藥指導、預後判斷及微小殘留監測等。通過對腫瘤的基因診斷,能夠實現腫瘤的基因分型,實現腫瘤的異癌同治以及同癌異治。

腫瘤靶向藥物的出現在很大程度上改變了腫瘤的傳統治療模式,大大改善了患者的預後,顯著延長了患者的無進展生存期和總生存期。這些靶向藥物主要為單克隆抗體類和一些小分子的激酶抑製劑,作用機理往往是抑制腫瘤新生血管生成、影響細胞周期、阻斷異常的細胞信號轉導通路及對錶觀遺傳改變進行調控[5]。

目前,針對非小細胞肺癌已經發現了多種驅動突變,這些突變包括EGFR、KRAS、間變性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)、ROS1、HER-2、ΒRAF、RET等[6-7]。針對攜帶這些突變的非小細胞肺癌患者可選用相應的分子靶向藥物進行治療,如靶向EGFR突變的TKI藥物,靶向ALK、ROS1、RET突變的克唑替尼(crizotinib),靶向ΒRAF突變的威羅菲尼(vemurafenib)/達拉菲尼(dabrafenib),靶向KRAS突變的司美替尼(selumetinib)等[5,8]。對於未經選擇的非小細胞肺癌患者,SCHILLER等[9]的研究結果顯示4種化療方案(卡鉑/紫杉醇、順鉑/吉西他濱、順鉑/紫杉醇、順鉑/多西他賽)的總體生存期為8個月。對於根據臨床特徵選擇的非鱗癌患者,SCAGLIOTTI等[10]的研究顯示應用培美曲塞/順鉑進行化療的中位生存期為11.8個月。而對於EGFR基因敏感突變的患者,MITSUDOMI等[11]的研究結果顯示,其中位生存期已經延長到30.9個月。 晚期非小細胞肺癌的治療模式已逐漸從以往的千篇一律發展到今天由基因診斷和靶向治療引領的個體化治療時代,而其中最關鍵的生物標誌物就是EGFR基因突變,它讓患者能在TKI藥物的治療中實現長期生存。

二、EGFR-TKI藥物的應用現狀

在非小細胞肺癌患者的驅動突變中,突變比例最高的當屬EGFR。EGFR屬於ErbB受體家族,該家族包括EGFR(ErbB-1)、HER-2/c-neu(ErbB-2)、HER-3(ErbB-3)和HER-4(ErbB-4)。EGFR基因也被稱作HER-1(ErbΒ1)基因,是一種癌基因。EGFR是一種受體酪氨酸激酶,位於細胞膜上,通過與細胞外的配體如表皮生長因子(epidermal growth factor,EGF)等結合後激活並發生二聚化,通過磷酸化激活下游信號通路,實現信號的傳遞,並最終影響細胞增殖及腫瘤發生、轉移、放化療抵抗等[12-13]。EGFR突變主要集中在酪氨酸激酶區,具體位置為第18~21號外顯子,其中19號外顯子部分缺失(19del)以及21號外顯子L858R點突變,約佔EGFR所有突變的90%,而突變的EGFR往往會使該信號通路異常激活,導致腫瘤發生[12,14-15]。在白種人非小細胞肺癌患者中,EGFR突變比例約為20%;在亞洲非小細胞肺癌患者中,EGFR的突變率約為50.2%;而在不吸煙的患者中,其突變比例甚至高達60.7%[16-17]。目前,國內外權威指南均提出,針對非小細胞肺癌,需要檢測EGFR的突變狀態。

靶向EGFR的EGFR-TKI藥物用於治療非小細胞肺癌已經有10多年的經驗,極大地提高了非小細胞肺癌患者的總生存期。目前,EGFRTKI藥物已經發展了3代,其中第1代EGFRTKI藥物以吉非替尼(gefitinib)和厄洛替尼(erlotinib)為代表,作用機理為通過競爭性結合EGFR-酪氨酸激酶催化區域上的ATP結合位點,阻斷信號傳遞。第1代EGFR-TKI藥物與EGFR的結合是一種可逆的結合過程[18]。大量臨床研究表明,非小細胞肺癌患者使用第1代EGFR-TKI藥物後的無進展生存期為9~13個月,之後發生耐葯,其中約有50%~60%的患者發生EGFR第20號外顯子T790M點突變,其他耐葯機制還包括EGFR的其他突變(D761Y、T854S、L747S等)及MET基因擴增、HER-2基因擴增、MAPK擴增、PIK3CA突變、ΒRAF突變、EMT(上皮向間質細胞轉化)、轉變為小細胞肺癌(small-cell lung cancer,SCLC)、AXL通路激活,核因子-κB(nuclear factorkappa B,NF-κB)激活等[19-22]。針對T790M突變,研發出了第2代EGFR-TKI藥物及第3代EGFR-TKI藥物,第2代EGFR-TKI藥物以阿法替尼(afatinib)為代表,其原理與第1代EGFRTKI類似,但與EGFR-TKI的結合是不可逆的,並且能夠和多種EGFR家族成員結合。然而,由於第2代EGFR-TKI靶向T790M的特異性不強,並且能夠和多種野生型EGFR基因結合,耐受劑量低,不良反應較強,因此並未達到理想的效果[23]。第3代EGFR-TKI藥物以奧斯替尼(osimertinib/AZD9291)為代表,能夠靶向EGFR的激活突變位點及T790M,競爭性結合EGFR-酪氨酸激酶催化區域上的ATP結合位點,阻斷其信號傳遞。其優勢在於這種結合是不可逆的,並且只能和突變的EGFR結合,而對野生型EGFR不發生作用。 然而,第3代EGFR-TKI藥物仍然無法逃離靶向藥物耐葯的宿命,患者的無進展生存期在1年左右,部分患者產生了新的耐葯突變C797S[24-27]。目前,針對C797S的藥物正在研發中。最新的研究表明,將一種小分子藥物EAI045與愛必妥聯用,能夠在小鼠模型中顯著抑制EGFR L858R/T790M/C797S突變的非小細胞肺癌細胞的增殖,有望發展為第4代EGFRTKI藥物[28]。

由於非小細胞肺癌患者能夠極大獲益於EGFR-TKI藥物的治療,對於這些患者進行基因診斷十分必要。組織活檢作為腫瘤的標準診斷流程,能夠提供樣本用於基因診斷,以決定該患者是否適用靶向藥物。但由於組織活檢存在有時無法進行、操作風險較高、無法獲得組織樣本、無法實時檢測患者的基因突變狀態等問題,甚至由於腫瘤存在異質性,獲得的部分組織樣本無法正確反映腫瘤的突變等情況,非小細胞肺癌的突變檢測亟需一種方便、快捷、特異、無創或微創的檢測方法。

三、液體活檢技術

近年來,液體活檢技術取得了巨大進步。作為一種新興的檢測方法,液體活檢由於其非侵入性、方便、快捷和較高的可靠性等優點已越來越多地被應用於臨床,並且具有很大的發展潛力。只需要對腫瘤患者進行簡單的采血就能實現實時、重複地檢測腫瘤脫落進入血液的循環腫瘤細胞(circulating tumor cell,CTC)、循環腫瘤DNA(circulating tumor DNA,ctDNA)及外泌體[29-31]。通過液體活檢,醫生能夠建立腫瘤基因表達譜、靶向突變用藥、及時判斷治療是否有效、動態調節治療方案等。對於非小細胞肺癌患者而言,液體活檢技術能夠用於腫瘤的早期篩查、療效和預後評估以及耐葯檢測等,具有傳統組織活檢不具備的諸多優勢[32]。

四、CTC

1869年,澳大利亞學者ASHWORTH[33]首次在轉移性腫瘤患者的血液中觀察到腫瘤細胞,並率先提出了CTC的概念。CTC被認為是自發或經由診療操作,脫離實體腫瘤或轉移癌進入外周血的腫瘤細胞[34]。CTC進入血液可能是經由腫瘤內部破潰的血管、經由上皮向間質細胞轉化或主動發生遷移,進入外周血中[35-36]。CTC在外周血中以單個細胞或細胞團的形式存在[37]。CTC在腫瘤患者外周血中的含量很低,往往105~107個白細胞中才存在1個CTC[38]。隨著CTC檢測分離和檢測技術的進步,目前CTC檢測已被應用於臨床。實現CTC檢測首先需要將其與血液中的各種細胞進行區分,然而目前尚無方法能夠十分可靠並且高效地將CTC從血液中分離出來。實現對CTC的分析需要特殊的分離方式和有效的檢測手段。目前,CTC的分離方式主要有根據細胞的物理性質,如細胞大小、密度等(密度梯度離心法、微孔過濾法)進行分離;根據細胞的生物學特性,使用免疫磁珠進行分離(針對CTC細胞表面抗原的正向分選以及針對白細胞表面抗原的負向分選);通過微流控晶元進行CTC分離等[39-43]。

當成功分離CTC後即可對其進行檢測。目前,CTC的檢測方式主要有:針對細胞數量的細胞計數,基於基因檢測的免疫熒光、FISH、測序、逆轉錄(reverse transcription,RT)-PCR和表達分析以及細胞培養等。CellSearch是全球第1個獲得美國食品藥品管理局(U.S. Food and Drug Administration,FDA)認證的用於惡性腫瘤疾病管理的CTC檢測產品。目前,已經有多項研究結果表明CTC計數能夠作為乳腺癌、前列腺癌以及結直腸癌的預後指標[44]。在黑素瘤[45]、頭頸癌[46]等腫瘤中,CTC也被認為具有指示預後的效果。在治療過程中,CTC的數量變化能為治療效果的評價提供參考。患者在經過治療後,如果CTC數量急劇下降,往往會有更好的預後[47-48]。對於非小細胞肺癌患者,CTC的數量也與腫瘤的預後直接相關[49]。對於早期肺癌患者,術前檢測到的CTC數量越多,則腫瘤的無進展生存期及總生存期越短[50-51]。目前,使用CTC已經能夠檢測多種突變,包括EGFR、KRAS、ALK、ROS1、c-MET等,並且能夠用於EGFR-TKI繼發耐葯的用藥監測,有助於腫瘤個體化治療藥物的選擇以及治療方案的確定。

MAHESWARAN等[52]採用微流控晶元從27例非小細胞肺癌患者血液中分離CTC(中位數為74個/mL),並通過擴增突變阻滯系統(amplification refractory mutation system,ARMS)-PCR檢測EGFR的突變狀態,在採用EGFR-TKI治療的患者體內發現了T790M突變,並且T790M突變的出現明顯縮短了患者的無進展生存期。而在一項針對40例EGFR-TKI繼發耐葯患者的研究中發現,通過CTC檢測,約有80%的患者能夠檢出與組織活檢相同的T790M突變[53]。在另一項研究中,研究者通過激光顯微切割技術分離CTC,通過全基因組擴增,繼而使用PCR檢測EGFR 19del、EGFR L858R及EGFR T790M的突變狀態。結果表明95%(19/20)的單個CTC能夠產生至少1種EGFR突變的擴增子,其中有55%(11/20)成功產生了檢測EGFR 19del的擴增子,85%(17/20)成功產生了檢測EGFR L858R的擴增子,45%(9/20)成功產生了檢測EGFR T790M的擴增子[54]。

目前,CTC的應用仍然具有一定的局限性,包括檢出率低(尤其是在腫瘤早期,檢出率極低)、需要依賴於特殊的分離設備、不同的分離方式影響CTC的純度、需要通過單細胞測序技術對全基因組進行分析、腫瘤存在異質性、檢測的CTC不能代表整個腫瘤的狀態等。目前,液體活檢技術用於非小細胞肺癌EGFRTKI繼發耐葯的監測時,更多檢測的是ctDNA。

五、ctDNA檢測

1948年,Mandel和Métais發現在外周血中存在大量的遊離DNA(cell-free DNA,cfDNA),這些cfDNA來自於自體細胞破潰。而在數十年後,人們才在腫瘤患者血液中確定存在腫瘤特異的DNA,即ctDNA[55-56]。ctDNA被認為是腫瘤細胞凋亡、壞死及分泌所釋放出的DNA[57],其在腫瘤患者體內的含量很低,約佔整個cfDNA的1%,甚至只有0.01%[58]。同時,ctDNA的半衰期很短,只有數小時,因此可以用於對腫瘤患者進行實時監控[59]。ctDNA的片段大小也有較固定的特徵,多為核小體的整數倍,主要集中於160~180 bp[60]。ctDNA的富集對於其分析具有明顯影響,通過使用磁珠特異性的收集小片段核酸能夠實現ctDNA的富集,而使用探針進行靶向捕獲或使用特定引物進行靶向擴增能夠對染色體的特定區域進行富集並檢測。

在多種實體腫瘤中存在ctDNA。研究表明檢測腫瘤患者體內ctDNA的水平能夠用於評估腫瘤負荷、監測複發及評估治療的有效性[61-62]。由於ctDNA占整個cfDNA的比例極低,檢測存在大量的背景雜訊,需要使用更加靈敏的檢測方式,如基於PCR技術的ARMS-PCR、BEAMing、數字PCR,基於下一代測序技術及PCR技術的標記擴增深度測序、安全測序系統、超高多重PCR捕獲測序等以及通過靶向捕獲,如癌症個體化深度測序分析(cancer personalized profiling by deep sequencing,CAPP-Seq)等。通過對ctDNA進行檢測,能夠發現腫瘤特異的基因改變,如點突變、插入/缺失、拷貝數變異、染色體重排甚至是表觀遺傳學改變[63-64]。

六、ctDNA在EGFR-TKI繼發耐葯監測中的應用

目前,關於ctDNA用於EGFR-TKI繼發耐葯的監測已有較多實踐經驗。TANIGUCHI等[65]在針對肺腺癌繼發耐葯的研究中,通過一種基於數字PCR原理的BEAMing技術對ctDNA進行檢測,結果顯示43.5%(10/23)的肺腺癌患者產生了EGFR T790M突變。ZHENG等[66]採用數字PCR對使用EGFR-TKI藥物的非小細胞肺癌患者的ctDNA進行檢測,結果顯示在117例EGFR-TKI繼發耐葯的患者中,有47%(55/117)的患者發生了EGFR T790M突變,並且在EGFR T790M陽性和陰性的繼發耐葯患者中,年齡、性別、組織學、吸煙史及EGFR-TKI作為幾線藥物治療等方面均無明顯差異。在一項關於厄洛替尼的2期臨床試驗中,招募了60例患者,每2個月及腫瘤進展時抽取患者血液,使用數字PCR檢測EGFR 19del、EGFR L858R及EGFR T790M的突變狀態,最終有44例患者的腫瘤發生進展,其中有35例可再次活檢,發現有66%(23/35)的患者發生了EGFR T790M突變;有39例患者通過數字PCR檢測ctDNA,有23%(9/39)的患者也發現了EGFR T790M突變;值得一提的是有2例無法再次活檢的患者通過ctDNA檢出了EGFR T790M突變[67]。在另一項針對第3代EGFR-TKI藥物——諾司替尼(rociletinib)繼發耐葯的43例非小細胞肺癌患者的研究中,通過CAPP-Seq檢測ctDNA,發現有46%的患者產生了多種耐葯機制,提示存在腫瘤異質性,同時發現了新的耐葯突變EGFR L798I,該研究還發現在奧斯替尼耐葯的患者中,EGFR C797S突變佔33%,而在諾司替尼繼發耐葯的患者中這種突變僅佔3%左右[68]。在一項通過ctDNA檢測非小細胞肺癌患者EGFR突變的研究中,研究者比較了基於非數字PCR的Cobas EGFR Mutation Test和therascreen EGFR amplification refractory mutation system assay平台以及基於數字PCR的Droplet Digital PCR和BEAMing digital PCR,結果顯示,對於EGFR T790M突變,Cobas EGFR Mutation Test的敏感性和特異性分別為73%和67%,而BEAMing digital PCR的敏感性和特異性分別為81%和58%[69]。

目前,ctDNA在臨床上的應用仍然具有一定的局限性,包括含量很低,尤其在癌症早期,其含量更低;依賴於高靈敏度的檢測手段;無法檢測蛋白質,導致核酸的檢測結果無法與蛋白質共定位;無法進行活細胞功能研究等。

七、外泌體

外泌體是由細胞內部的多泡體與細胞膜融合後,釋放到細胞外基質中的一種直徑為30~120 nm的膜性囊泡,在多種疾病及多種體液,如血液、尿液、母乳、腹水、唾液中均能檢出。外泌體內含物大部分是蛋白質,如膜聯蛋白、CD9、CD63、CD81、主要組織相容性複合體(major histocompatibility complex,MHC)-1和腫瘤易感基因101(tumor susceptibility gene 101,TSG101)蛋白等,同時含有大量的mRNA、微小RNA(microRNA,miRNA)、長鏈非編碼RNA(long noncoding RNA,lncRNA))和環狀RNA(circular RNA,circRNA)[70-71]。在腫瘤細胞產生的外泌體中可檢測到過度表達的蛋白標誌物,如死亡受體Fas配體、腫瘤壞死因子相關凋亡誘導配體(tumor necrosis factor-related apoptosisinducing ligand,TRAIL)和轉化生長因子-β(transforming growth factor-beta,TGF-β)等腫瘤抗原和免疫抑制蛋白。腫瘤細胞分泌的外泌體具有多種功能,包括導致腫瘤發生[72-73]、影響血管生成/內皮細胞活化[74-75]、腫瘤增殖[76-77]、腫瘤侵襲/轉移[78-79]以及免疫逃逸[80]等。外泌體的分離方法有很多,超速離心、密度梯度離心、免疫磁珠、微流控晶元等均能將外泌體從血液中分離[81-83]。而外泌體中攜帶的蛋白及RNA能夠用於腫瘤的早期診斷、預後判斷及耐葯評估,如隨著疾病的惡化,胃癌患者外泌體的數量會增加[84]。通過對肺癌患者血液及尿液的外泌體進行富集,檢測其中的蛋白質及miRNA,能夠實現對肺癌的診斷及預後判斷[69,85-90]。

雖然對於外泌體的研究已經有數十年的歷史,然而外泌體在腫瘤診斷中的應用仍是一個較新的領域。目前,外泌體在臨床上的應用仍具有一定的局限性,包括其分離需要特殊設備、無法進行細胞功能研究、使用的靶標還需要大樣本研究確定其與腫瘤的相關性,並且對於外泌體本身的形成和分泌等機制仍需要更深入的研究。目前還沒有關於外泌體應用於EGFRTKI繼發耐葯監測的文獻報道,而美國Exosome Diagnostics公司聲明將於今年推出肺癌外泌體活檢產品——ExoDx Lung(T790M)和ExoDx Lung(EGFR)。

八、總結

作為《麻省理工大學科技評論》評選出的「2015年度十大突破技術」之一,液體活檢技術已得到科研工作者及臨床醫療機構越來越多的關注。雖然目前國內外的液體活檢技術產業仍然處於初級階段,然而由於其具有非侵入性、方便、快捷和可靠性較高等優點,液體活檢技術將在腫瘤的伴隨診斷、預後判斷、微小殘留及篩查等方面扮演越來越重要的角色。而隨著更加高效、特異的CTC、ctDNA及外泌體分離方式的出現以及檢測技術的進步和新靶標的發現,液體活檢技術必將惠及更多的腫瘤患者,並在非小細胞肺癌患者EGFR-TKI繼發耐葯的動態監測中大放異彩。

參考文獻

[1]SIEGEL RL,MILLER KD,JEMAL A. Cancer statistics,2016[J]. CA Cancer J Clin,2016,66(1):7-30.

[2]CHEN W,ZHENG R,BAADE PD,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132.

[3]BUYUKCELIK A,YALCIN B,UTKAN G. Multidisciplinary management of lung cancer[J]. N Engl J Med,2004,350(19):2008-2010.

[4]JEMAL A,BRAY F,CENTER MM,et al. Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90.

[5]GHARWAN H,GRONINGER H. Kinase inhibitors and monoclonal antibodies in oncology:clinical implications[J]. Nat Rev Clin Oncol,2016,13(4):209-227.

[6]PAO W,GIRARD N. New driver mutations in nonsmall-cell lung cancer[J]. Lancet Oncol,2011,12(2):175-180.

[7]KOHNO T,ICHIKAWA H,TOTOKI Y,et al. KIF5B-RET fusions in lung adenocarcinoma[J]. Nat Med,2012,18(3):375-377.

[8]ZAPPA C,MOUSA SA. Non-small cell lung cancer:current treatment and future advances[J]. Transl Lung Cancer Res,2016,5(3):288-300.

[9]SCHILLER JH,HARRINGTON D,BELANI CP,et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer[J]. N Engl J Med,2002,346(2):92-98.

[10]SCAGLIOTTI GV,PARIKH P,VON PAWEL J,et al. Phase Ⅲ study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer[J] . J Clin Oncol,2008,26(21):3543-3551.

[11]MITSUDOMI T,MORITA S,YATABE Y,et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor(WJTOG3405):an open label,randomised phase 3 trial[J]. Lancet Oncol,2010,11(2):121-128.

[12]SHARMA SV,BELL DW,SETTLEMAN J,et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer,2007,7(3):169-181.

[13]LYNCH TJ,BELL DW,SORDELLA R,et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2004,350(21):2129-2139.

[14]ZHANG X,GUREASKO J,SHEN K,et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor[J]. Cell,2006,125(6):1137-1149.

[15]PAO W,CHMIELECKI J. Rational,biologically based treatment of EGFR-mutant non-small-cell lung cancer[J]. Nat Rev Cancer,2010,10(11):760-774.

[16]KUMAR A,PETRI ET,HALMOS B,et al. Structure and clinical relevance of the epidermal growth factor receptor in human cancer[J]. J Clin Oncol,2008,26(10):1742-1751.

[17]SHIAU CJ,BABWAH JP,DA CUNHA SANTOS G,et al. Sample features associated with success rates in population-based EGFR mutation testing[J]. J Thorac Oncol,2014,9(7):947-956.

[18]BRUGGER W,THOMAS M. EGFR-TKI resistant non-small cell lung cancer (NSCLC):new developments and implications for future treatment[J]. Lung Cancer,2012 ,77(1):2-8.

[19]COSTA DB,KOBAYASHI SS. Whacking a molecule:clinical activity and mechanisms of resistanceto third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M[J]. Transl Lung Cancer Res,2015,4(6):809-815.

[20]KE EE,ZHOU Q,WU YL. Emerging paradigms in targeted treatments for Asian patients with NSCLC[J]. Expert Opin Pharmacother,2015,16(8):1167-1176.

[21] METRO G,CRINò L. Advances on EGFR mutation for lung cancer[J]. Transl Lung Cancer Res,2012,1(1):5-13.

[22]LANDI L,CAPPUZZO F. Pharmacotherapy targeting the EGFR oncogene in NSCLC[J]. Expert Opin Pharmacother,2014,15(16):2293-2305.

[23]MILLER VA,HIRSH V,CADRANEL J,et al. Afatinib versus placebo for patients with advanced,metastatic non-small-cell lung cancer after failure of erlotinib,gefitinib,or both,and one or two lines of chemotherapy (LUX-Lung 1):a phase 2b/3 randomised trial[J]. Lancet Oncol,2012,13(5):528-538.

[24]CROSS DA,ASHTON SE,GHIORGHIU S,et al. AZD9291,an irreversible EGFR TKI,overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer[J]. Cancer Discov,2014,4(9):1046-1061.

[25] J

·NNE PA,YANG JC,KIM DW,et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. N Engl J Med,2015,372(18):1689-1699.

[26]THRESS KS,PAWELETZ CP,FELIP E,et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M[J]. Nat Med,2015,21(6):560-562.

[27]YU HA,TIAN SK,DRILON AE,et al. Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor:emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain[J]. JAMA Oncol,2015,1(7):982-984.

[28]JIA Y,YUN CH,PARK E,et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors[J]. Nature,2016,534(7605):129-132.

[29]ALIX-PANABIèRES C,PANTEL K. Circulating tumor cells:liquid biopsy of cancer[J]. Clin Chem,2013,59(1):110-118.

[30]ESPOSITO A,BARDELLI A,CRISCITIELLO C,et al. Monitoring tumor-derived cell-free DNA in patients with solid tumors:clinical perspectives and research opportunities[J]. Cancer Treat Rev,2014,40(5):648-655.

[31]GIALLOMBARDO M,CHACáRTEGUI BORRáS J,CASTIGLIA M,et al. Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients" plasma through qPCR:a feasible liquid biopsy tool[J]. J Vis Exp,2016,doi:10.3791/53900.

[32]ISOBE K,HATA Y,KOBAYASHI K,et al. Clinical significance of circulating tumor cells and free DNA in non-small cell lung cancer[J]. Anticancer Res,2012,32(8):3339-3344.

[33]ASHWORTH TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death[J]. Aus Med J,1869,14:146-149.

[34]FRIEL AM,CORCORAN C,CROWN J,et al. Relevance of circulating tumor cells,extracellular nucleic acids,and exosomes in breast cancer[J]. Breast Cancer Res Treat,2010,123(3):613-625.

[35]FIDLER IJ. The pathogenesis of cancer metastasis:the "seed and soil" hypothesis revisited[J]. Nat Rev Cancer,2003,3(6):453-458.

[36]THIERY JP,LIM CT. Tumor dissemination:an EMT affair[J]. Cancer Cell,2013,23(3):272-273.

[37]HOU JM,KREBS MG,LANCASHIRE L,et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer[J]. J Clin Oncol ,2012,30(5):525-532.

[38]ALLAN AL,KEENEY M. Circulating tumor cell analysis:technical and statistical considerations for application to the clinic[J]. J Oncol,2010,2010:426218.

[39]KREBS MG,METCALF RL,CARTER L,et al. Molecular analysis of circulating tumour cells-biology and biomarkers[J]. Nat Rev Clin Oncol,2014,11(3):129-144.

[40]PARKINSON DR,DRACOPOLI N,PETTY BG,et al. Considerations in the development of circulating tumor cell technology for clinical use[J]. J Transl Med,2012,10:138.

[41]ALIX-PANABIèRES C,PANTEL K. Technologies for detection of circulating tumor cells:facts and vision[J]. Lab Chip,2014,14(1):57-62.

[42]HAROUAKA R,KANG Z,ZHENG SY,et al. Circulating tumor cells:advances in isolation and analysis,and challenges for clinical applications[J]. Pharmacol Ther,2014,141(2):209-221.

[43]JIN C,MCFAUL SM,DUFFY SP,et al. Technologies for label-free separation of circulating tumor cells:from historical foundations to recent developments[J]. Lab Chip,2014,14(1):32-44.

[44]ALIX-PANABIèRES C,PANTEL K. Challenges in circulating tumour cell research[J]. Nat Rev Cancer,2014,14(9):623-631.

[45]RAO C,BUI T,CONNELLY M,et al. Circulating melanoma cells and survival in metastaticmelanoma[J]. Int J Oncol,2011,38(3):755-760.

[46]NICHOLS AC,LOWES LE,SZETO CC,et al. Detection of circulating tumor cells in advanced head and neck cancer using the CellSearch system[J]. Head Neck,2012,34(10):1440-1444.

[47]DE BONO JS,SCHER HI,MONTGOMERY RB,et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer[J]. Clin Cancer Res,2008,14(19):6302-6309.

[48]DE BONO JS,LOGOTHETIS CJ,MOLINA A,et al. Abiraterone and increased survival in metastatic prostate cancer[J]. N Engl J Med,2011,364(21):1995-2005.

[49]KREBS MG,SLOANE R,PRIEST L,et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer[J]. J Clin Oncol,2011,29(12):1556-1563.

[50]HOFMAN V,BONNETAUD C,ILIE MI,et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker[J]. Clin Cancer Res,2011,17(4):827-835.

[51]HOFMAN V,ILIE MI,LONG E,et al. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-smallcell lung carcinoma:comparison of the efficacy of the CellSearch AssayTMand the isolation by size of epithelial tumor cell method[J]. Int J Cancer,2011,129(7):1651-1660.

[52]MAHESWARAN S,SEQUIST LV,NAGRATH S,et al. Detection of mutations in EGFR in circulating lung-cancer cells[J]. N Engl J Med,2008,359(4):366-377.

[53]SUNDARESAN TK,SEQUIST LV,HEYMACH JV,et al. Detection of T790M,the acquired resistance EGFR mutation,by tumor biopsy versus noninvasive blood-based analyses[J]. Clin Cancer Res,2016,22(5):1103-1110.

[54]RAN R,LI L,WANG M,et al. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood[J]. Anal Bioanal Chem,2013,405(23):7377-7382.

[55]LEON SA,SHAPIRO B,SKLAROFF DM,et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res,1977,37(3):646-650.

[56]STROUN M,ANKER P,MAURICE P,et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients[J]. Oncology,1989,46(5):318-322.

[57]JAHR S,HENTZE H,ENGLISCH S,et al. DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J]. Cancer Res,2001,61(4):1659-1665.

[58]DIEHL F,SCHMIDT K,CHOTI MA,et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med,2008,14(9):985-990.

[59]YU SC,LEE SW,JIANG P,et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing[J]. Clin Chem,2013,59(8):1228-1237.

[60]MOULIERE F,EL MESSAOUDI S,PANG D,et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer[J]. Mol Oncol,2014,8(5):927-941.

[61]SOZZI G,CONTE D,LEON M,et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer[J]. J Clin Oncol,2003,21(21):3902-3908.

[62]KIM K,SHIN DG,PARK MK,et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer:diagnostic validity and significant reduction of cfDNA after surgical resection[J]. Ann Surg Treat Res,2014,86(3):136-142.

[63]WANG JY,HSIEH JS,CHANG MY,et al. Molecular detection of APC,K-ras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J]. World J Surg,2004,28(7):721-726.

[64]FUJIWARA K,FUJIMOTO N,TABATA M,et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer[J]. Clin Cancer Res,2005,11(3):1219-1225.

[65]TANIGUCHI K,UCHIDA J,NISHINO K,et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas[J]. Clin Cancer Res,2011,17(24):7808-7815.

[66]ZHENG D,YE X,ZHANG MZ,et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance[J]. Sci Rep,2016,6:20913.

[67]YANAGITA M,REDIG AJ,PAWELETZ CP,et al. A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR mutant non-small cell lung cancer patients treated with erlotinib on a phaseⅡ trial[J]. Clin Cancer Res,2016. [Epub ahead of print]

[68]CHABON JJ,SIMMONS AD,LOVEJOY AF,et al. Circulating tumour DNA profilingreveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients[J]. Nat Commun,2016,7:11815.

[69] THRESS KS,BRANT R,CARR TH,et al.EGFR mutation detection in ctDNA from NSCLC patient plasma:a cross-platform comparison of leading technologies to support the clinical development of AZD9291[J]. Lung Cancer,2015,90(3):509-515.·

[70] VALADI H,EKSTR OM K,BOSSIOS A,et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659.

[71]TAKAHASHI K,YAN IK,KOGURE T,et al. Extracellular vesicle-mediated transfer of long noncoding RNA ROR modulates chemosensitivity in human hepatocellular cancer[J]. FEBS Open Bio,2014,4:458-467.

[72]ABD ELMAGEED ZY,YANG Y,THOMAS R,et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes[J]. Stem Cells,2014,32(4):983-997.

[73] MELO SA,SUGIMOTO H,O"CONNELL JT,et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis[J]. Cancer Cell,2014,26(5):707-721.

[74]PARK JE,TAN HS,DATTA A,et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes[J]. Mol Cell Proteomics,2010,9(6):1085-1099.

[75]NAZARENKO I,RANA S,BAUMANN A,et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation[J]. Cancer Res,2010,70(4):1668-1678.

[76]KHAN S,ASPE JR,ASUMEN MG,et al. Extracellular,cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential[J]. Br J Cancer,2009,100(7):1073-1086.

[77]AL-NEDAWI K,MEEHAN B,MICALLEF J,et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells[J]. Nat Cell Biol,2008,10(5):619-624.

[78]AGA M,BENTZ GL,RAFFA S,et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes[J]. Oncogene,2014,33(37):4613-4622.

[79]OSTENFELD MS,JEPPESEN DK,LAURBERG JR,et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties[J]. Cancer Res,2014,74(20):5758-5771.

[80]YU S,LIU C,SU K,et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells[J]. J Immunol,2007,178(11):6867-6875.

[81]TAYLOR DD,ZACHARIAS W,GERCELTAYLOR C. Exosome isolation for proteomic analyses and RNA profiling[J]. Methods Mol Biol,2011,728:235-246.

[82]REKKER K,SAARE M,ROOST AM,et al. Comparison of serum exosome isolation methods for microRNA profiling[J]. Clin Biochem,2014,47(1-2):135-138.

[83]ALVAREZ ML,KHOSROHEIDARI M,KANCHI RAVI R,et al. Comparison of protein,microRNA,and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int,2012,82(9):1024-1032.

[84]BARAN J,BAJ-KRZYWORZEKA M,WEGLARCZYK K,et al. Circulating tumourderived microvesicles in plasma of gastric cancer patients[J]. Cancer Immunol Immunother,2010,59(6):841-850.

[85]YAMASHITA T,KAMADA H,KANASAKI S,et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis[J]. Pharmazie,2013,68(12):969-973.

[86]LI Y,ZHANG Y,QIU F,et al. Proteomic identification of exosomal LRG1:a potential urinary biomarker for detecting NSCLC[J]. Electrophoresis,2011,32(15):1976-1983.

[87]HU Z,CHEN X,ZHAO Y,et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer[J]. J Clin Oncol,2010,28(10):1721-1726.

[88]CAZZOLI R,BUTTITTA F,DI NICOLA M,et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer[J]. J Thorac Oncol,2013,8(9):1156-1162.

[89]RODRíGUEZ M,SILVA J,LóPEZ-ALFONSO A,et al. Different exosome cargo from plasma/ bronchoalveolar lavage in non-small-cell lung cancer[J]. Genes Chromosomes Cancer,2014,53(9):713-724.

(本文編輯:龔曉霖)

Liquid biopsy for monitoring EGFR-TKI drug resistance in patients with non-small-cell lung cancer

LIN Cheng1,JIANG Tang2.(1. Hangzhou DIAN Medical Laboratorg,Hangzhou 310030,Zhejiang,China;2. The First Affiliated Hospital of Sun Yat-sen University,Zhongshan 510080,Guangdong,China)

Abstract:As a milestone in the treatment of non-small-cell lung cancer,epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI) drugs significantly prolong the lifetime of patients with non-smallcell lung cancer and improve the patients" life quality. The frequency of EGFR mutation among non-small-cell lung cancer patients in Asia is higher than that among white men,so Asian patients have more benefits from EGFR-TKI drugs. However,one of the most important problems in targeted drugs is drug resistance. All EGFR-mutated patients who initially benefit from EGFR-TKI drugs develop progressive disease eventually,usually after approximately 1 year since treatment. Nowadays,due to drug resistance,there have been 3 generations of EGFR-TKI drugs. For the mechanisms of EGFR-TKI drug resistance,point mutation EGFR T790M and C797S are of special concern. Dynamic monitoring of drug resistance must be performed in patients who use EGFR-TKI drugs to achieve better therapeutic effect. Pathological biopsy is a gold standard for the diagnosis of cancer. However,pathological biopsy can not be competent for the dynamic monitoring of non-small-cell lung cancer patients,due to the risk of operation,the difficulty of getting tissue samples,being unable to determine in real-time,tumor heterogeneity and so on. Liquid biopsy is a new,non-invasive,convenient and highly reliable determination method. Liquid biopsy shows great potential on early diagnosis and screening,evaluation of therapeutic effect and prognosis and monitoring drugresistance by determing circulating tumor cell(CTC),circulating tumor DNA(ctDNA)and tumor-released exosome in blood. This article reviews the progress of EGFR-TKI drugs and liquid biopsy,and assesses the potential of liquid biopsy in EGFR-TKI drug resistance of patients with non-small-lung cancer.

Key words:Liquid biopsy;Epidermal growth factor receptor;Tyrosine kinase inhibitor;Non-small-cell lung cancer

文章編號:1673-8640(2016)010-0835-09

中圖分類號:R446.11

文獻標誌碼:A

DOI:10.3969/j.issn.1673-8640.2016.010.001

作者簡介:林 鋮,男,1988年生,博士,主管技師,主要從事腫瘤的診斷及伴隨診斷領域的基因研究。

通訊作者:姜 儻,聯繫電話:0571-56137803。

收稿日期:(2016-08-04)


推薦閱讀:

漫談肺癌治療過程止痛 科普系列三十七
肺癌患者家屬們!請珍惜當下,好好陪伴!加油!
肺腺癌中晚期的存活時間?
如何發現早期肺癌?
是不是肺癌?體檢發現肺部小結節怎麼辦?

TAG:技術 | 細胞 | 肺癌 | 患者 | 液體 |