JS演算法——排序演算法
參考:十大經典排序 十大排序演算法
常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸併排序、快速排序、堆排序、基數排序等。
- 比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
- 對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。這步做完後,最後的元素會是最大的數。
- 針對所有的元素重複以上的步驟,除了最後一個。
- 持續每次對越來越少的元素重複上面的步驟,直到沒有任何一對數字需要比較。
function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { // 相鄰元素兩兩對比 var temp = arr[j+1]; // 元素交換 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr;}
二:選擇排序
演算法步驟:
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
- 再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。
- 重複第二步,直到所有元素均排序完畢。
function selectionSort(arr) { var len = arr.length; var minIndex, temp; for (var i = 0; i < len - 1; i++) { minIndex = i; for (var j = i + 1; j < len; j++) { if (arr[j] < arr[minIndex]) { // 尋找最小的數 minIndex = j; // 將最小數的索引保存 } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr;}
三:插入排序
演算法步驟:
- 將第一待排序序列第一個元素看做一個有序序列,把第二個元素到最後一個元素當成是未排序序列。
- 從頭到尾依次掃描未排序序列,將掃描到的每個元素插入有序序列的適當位置。(如果待插入的元素與有序序列中的某個元素相等,則將待插入元素插入到相等元素的後面。)
function insertionSort(arr) { var len = arr.length; var preIndex, current; for (var i = 1; i < len; i++) { preIndex = i - 1; current = arr[i]; while(preIndex >= 0 && arr[preIndex] > current) { arr[preIndex+1] = arr[preIndex]; preIndex--; } arr[preIndex+1] = current; } return arr;}
四:希爾排序
希爾排序,也稱遞減增量排序演算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序演算法。
希爾排序是基於插入排序的以下兩點性質而提出改進方法的:
- 插入排序在對幾乎已經排好序的數據操作時,效率高,即可以達到線性排序的效率;
- 但插入排序一般來說是低效的,因為插入排序每次只能將數據移動一位;
希爾排序的基本思想是:先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,待整個序列中的記錄「基本有序」時,再對全體記錄進行依次直接插入排序。
演算法步驟:
- 選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
- 按增量序列個數 k,對序列進行 k 趟排序;
- 每趟排序,根據對應的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進行直接插入排序。僅增量因子為 1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。
function shellSort(arr) { var len = arr.length, temp, gap = 1; while(gap < len/3) { //動態定義間隔序列 gap =gap*3+1; } for (gap; gap > 0; gap = Math.floor(gap/3)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) { arr[j+gap] = arr[j]; } arr[j+gap] = temp; } } return arr;}
五:歸併排序
歸併排序(Merge sort)是建立在歸併操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
作為一種典型的分而治之思想的演算法應用,歸併排序的實現由兩種方法:
- 自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);
- 自下而上的迭代;
演算法步驟:
- 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合併後的序列;
- 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;
- 比較兩個指針所指向的元素,選擇相對小的元素放入到合併空間,並移動指針到下一位置;
- 重複步驟 3 直到某一指針達到序列尾;
- 將另一序列剩下的所有元素直接複製到合併序列尾。
function mergeSort(arr) { // 採用自上而下的遞歸方法 var len = arr.length; if(len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right));}function merge(left, right){ var result = []; while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result;}
六:快速排序
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
快速排序又是一種分而治之思想在排序演算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。
演算法步驟:
- 從數列中挑出一個元素,稱為 「基準」(pivot);
- 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作;
- 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序;
function quickSort(array, left, right) { var partitionIndex, left = typeof left == number ? left : 0, right = typeof right == number ? right : array.length-1; if (left < right) { partitionIndex = partition(array, left, right);//切分的基準值 quickSort(array, left, partitionIndex-1); quickSort(array, partitionIndex+1, right); } return array;}function partition(array, left ,right) { //分區操作 for (var i = left+1, j = left; i <= right; i++) {//j是較小值存儲位置的游標 array[i] < array[left] && swap(i, ++j, array);//以第一個元素為基準 } swap(left, j, array); //將第一個元素移至中間 return j;}
七:堆排序
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:
- 大頂堆:每個節點的值都大於或等於其子節點的值,在堆排序演算法中用於升序排列;
- 小頂堆:每個節點的值都小於或等於其子節點的值,在堆排序演算法中用於降序排列;
堆排序的平均時間複雜度為 Ο(nlogn)。
演算法步驟:
<1>.將初始待排序關鍵字序列(R1,R2....Rn)構建成大頂堆,此堆為初始的無序區;
<2>.將堆頂元素R[1]與最後一個元素R[n]交換,此時得到新的無序區(R1,R2,......Rn-1)和新的有序區(Rn),且滿足R[1,2...n-1]<=R[n];<3>.由於交換後新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,......Rn-1)調整為新堆,然後再次將R[1]與無序區最後一個元素交換,得到新的無序區(R1,R2....Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數為n-1,則整個排序過程完成。/*方法說明:堆排序@param array 待排序數組*/function heapSort(array) { console.time(堆排序耗時); if (Object.prototype.toString.call(array).slice(8, -1) === Array) { //建堆 var heapSize = array.length, temp; for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) { heapify(array, i, heapSize); } //堆排序 for (var j = heapSize - 1; j >= 1; j--) { temp = array[0]; array[0] = array[j]; array[j] = temp; heapify(array, 0, --heapSize); } console.timeEnd(堆排序耗時); return array; } else { return array is not an Array!; }}/*方法說明:維護堆的性質@param arr 數組@param x 數組下標@param len 堆大小*/function heapify(arr, x, len) { if (Object.prototype.toString.call(arr).slice(8, -1) === Array && typeof x === number) { var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp; if (l < len && arr[l] > arr[largest]) { largest = l; } if (r < len && arr[r] > arr[largest]) { largest = r; } if (largest != x) { temp = arr[x]; arr[x] = arr[largest]; arr[largest] = temp; heapify(arr, largest, len); } } else { return arr is not an Array or x is not a number!; }}var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22];console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96]
八:計數排序
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開闢的數組空間中。作為一種線性時間複雜度的排序,計數排序要求輸入的數據必須是有確定範圍的整數。
演算法步驟:
<1>. 找出待排序的數組中最大和最小的元素;
<2>. 統計數組中每個值為i的元素出現的次數,存入數組C的第i項;<3>. 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);<4>. 反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去function countingSort(arr, maxValue) { var bucket = new Array(maxValue+1), sortedIndex = 0; arrLen = arr.length, bucketLen = maxValue + 1; for (var i = 0; i < arrLen; i++) { if (!bucket[arr[i]]) { bucket[arr[i]] = 0; } bucket[arr[i]]++; } for (var j = 0; j < bucketLen; j++) { while(bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } return arr;}
九:桶排序
桶排序是計數排序的升級版。它利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:
- 在額外空間充足的情況下,盡量增大桶的數量
- 使用的映射函數能夠將輸入的 N 個數據均勻的分配到 K 個桶中
演算法步驟:
- <1>.設置一個定量的數組當作空桶;
- <2>.遍歷輸入數據,並且把數據一個一個放到對應的桶里去;
- <3>.對每個不是空的桶進行排序;
- <4>.從不是空的桶里把排好序的數據拼接起來。
function bucketSort(arr, bucketSize) { if (arr.length === 0) { return arr; } var i; var minValue = arr[0]; var maxValue = arr[0]; for (i = 1; i < arr.length; i++) { if (arr[i] < minValue) { minValue = arr[i]; // 輸入數據的最小值 } else if (arr[i] > maxValue) { maxValue = arr[i]; // 輸入數據的最大值 } } //桶的初始化 var DEFAULT_BUCKET_SIZE = 5; // 設置桶的默認數量為5 bucketSize = bucketSize || DEFAULT_BUCKET_SIZE; var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1; var buckets = new Array(bucketCount); for (i = 0; i < buckets.length; i++) { buckets[i] = []; } //利用映射函數將數據分配到各個桶中 for (i = 0; i < arr.length; i++) { buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]); } arr.length = 0; for (i = 0; i < buckets.length; i++) { insertionSort(buckets[i]); // 對每個桶進行排序,這裡使用了插入排序 for (var j = 0; j < buckets[i].length; j++) { arr.push(buckets[i][j]); } } return arr;}
十:基數排序
基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優先順序排序。最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以是穩定的。
演算法步驟:- <1>.取得數組中的最大數,並取得位數;
- <2>.arr為原始數組,從最低位開始取每個位組成radix數組;
- <3>.對radix進行計數排序(利用計數排序適用於小範圍數的特點)
var counter = [];function radixSort(arr, maxDigit) { var mod = 10; var dev = 1; for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { for(var j = 0; j < arr.length; j++) { var bucket = parseInt((arr[j] % mod) / dev); if(counter[bucket]==null) { counter[bucket] = []; } counter[bucket].push(arr[j]); } var pos = 0; for(var j = 0; j < counter.length; j++) { var value = null; if(counter[j]!=null) { while ((value = counter[j].shift()) != null) { arr[pos++] = value; } } } } return arr;}
推薦閱讀:
※常用演算法指南(一)基本演算法思想
※連續子數組的最大和
※曆法干支換算收官之作日上起時快演算法文字版獨家首發
※演算法 - 二叉樹的10種遍歷方法,你都會了么?( 二 )
※鏈表中倒數第k個節點