抗菌肽與腸道健康研究新進展
Abstract
Figures
Tables
引用本文 |
劉偉, 皮雄娥, 王欣. 抗菌肽與腸道健康研究新進展[J]. 微生物學報,2016, 56(10): 1537-1543.
Liu Wei, Pi Xiong"e, Wang Xin . Progress in studying antimicrobial peptides and intestinal health[J]. Acta Microbiologica Sinica, 2016, 56(10): 1537-1543.
抗菌肽與腸道健康研究新進展 劉偉, 皮雄娥, 王欣 浙江省農業科學院植物保護與微生物研究所, 浙江 杭州 310021 收稿日期:2016-03-18;修回日期:2016-05-13;網路出版日期:2016-05-23 基金項目:浙江省公益性項目(2014C32G4010031);國家「863計劃」(2015AA020701);浙江省植物有害生物防控重點實驗室-省部共建國家重點實驗室培育基地(2010DS700124-ZZ1604) *通信作者:王欣,Tel:+86-571-86404066;Fax:+86-571-86417303;E-mail:xxww101@sina.com 摘要: 抗菌肽是生物體內誘導產生的一類具有抗菌作用的生物活性肽,在機體抵抗病原入侵方面起著重要作用。近年來,腸道微生態研究炙手可熱,抗菌肽與腸道健康的研究正廣泛開展。相關研究結果表明,抗菌肽表達水平的高低可以用來評估機體腸道健康狀態,從而監測抗菌肽表達水平來建立一種疾病預防和治療過程中的輔助診斷手段。本文圍繞抗菌肽對腸道菌群結構和免疫影響兩方面的最新研究進展進行歸納與分析,旨在為臨床診斷與治療提供參考。 關鍵詞: 抗菌肽 腸道穩態 腸道微生物 Progress in studying antimicrobial peptides and intestinal health Liu Wei, Pi Xiong"e, Wang Xin Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China Received 18 March 2016; Revised 13 May 2016; Published online 23 May 2016 *Corresponding author: Tel:+86-571-86404066;Fax:+86-571-86417303;E-mail:xxww101@sina.com Supported by Public Projects of Zhejiang Province (2014C32G4010031) and National High-tech R&D Program of China (2015AA020701) and by the State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-ZZ1604) Abstract: Antimicrobial peptides (AMPs) are bioactive short peptides produced in organisms. AMPs have important roles in resisting pathogen invasion. In recent years, several studies on intestinal microecology is hot and the influence of antimicrobial peptides on intestinal health is widely concerned. Relevant results have demonstrated that the expression level of AMPs can be used to assess the body"s intestinal health, thereby an auxiliary method could be established through monitoring on the expression level of AMPs during disease prevention and treatment. In this paper, research advances in antimicrobial peptides in intestinal microflora structure and immune effect were summarized and analyzed to provide references for clinical diagnosis and treatment. Key words: antimicrobial peptides gut homeostasis intestinal microbiota
微生物細胞數量占人類細胞的70%-90%,其基因數量卻是人類基因的1000倍之多[1]。作為人體與外界接觸面積最大的消化道器官-腸道,寄居的微生物數量約為人類細胞數量的10倍,其基因總數是人體基因數量的100倍左右[2]。抵禦眾多微生物感染腸道的重要防禦機制之一就是腸道分泌的抗菌肽。作為天然免疫系統的重要組成部分,抗菌肽在機體對抗感染及炎症中發揮重要作用。除此之外,抗菌肽還具有維持菌群穩定、促血管生成和免疫調節等多種生理功能(圖 1)。由於抗菌肽是最有希望取代抗生素候選者之一,所以各國科學家和製藥公司開始投入資金進行大規模的研發。世界衛生組織預計未來的幾年內,天然抗菌劑的產值將達到25億美元。截止2016年3月,美國已有兩類新抗菌肽已經上市,分別是RXGeneric drugs公司生產的多粘菌素和Trimeris公司生產的恩夫韋肽。除此之外,一些能誘導內源性抗菌肽表達的誘導劑如維生素D3和異亮氨酸和丁酸鈉也正進行Ⅱ期臨床試驗。
|
圖 1. 抗菌肽具有多功能作用[4] Figure 1. Multifunctional roles of antimicrobial peptides[4] |
圖選項 |
潘氏細胞和腸細胞是人類腸道生產抗菌肽的主要場所,是腸黏膜屏障重要的組成基礎。作為腸道天然黏膜免疫屏障中關鍵的細胞分子組成成分,與腸道共生細菌共同維持腸道菌群穩定。Donia等通過計算機預測在人體微生物中有超過3000種候選的生物合成基因簇,這其中包含了很多編碼抗菌肽的基因[3]。
防禦素作為最重要的一類抗菌肽,在腸黏膜抗微生物中的作用頗受關注,其抗菌譜廣、不易產生耐藥性和不影響腸道微生態平衡。防禦素主要是由半胱氨酸殘基組成,往往具有3個二硫鍵的反式β-sheets結構。防禦素分為α防禦素,β防禦素和θ-防禦素。β防禦素在所有脊椎動物中角化細胞和上皮細胞中分泌產生,二硫鍵形成部位在1-5、2-4和3-6位置上[5],α存在大部分哺乳動物里,二硫鍵形成部位在1-6、2-4和3-5位置上[6],θ只存在靈長類動物中[7]。目前在人類中發現6種α防禦素[8]和39種β防禦素[9]。在牛和豬的基因組中發現了至少57個和29個編碼β防禦素的基因,而雞的基因組中含有14種β防禦素,但α防禦素並沒有在這些動物體內發現[10-11]。α防禦素HBD1-4一般在嗜中性粒細胞顆粒中,其餘的2種α防禦素(HD5和HD6)存在小腸的潘氏細胞中[7]。除了防禦素以外,腸細胞還分泌其他類型抗菌肽cathelicidins (如LL-37)、C型凝集素(REG蛋白家族)、RNase和S100 (如鈣蛋白),在細菌、真菌和病毒侵入過程中起著共同保護宿主以及穩定腸內微生物菌群的作用,一旦腸道中發生細菌感染和炎症反應時,其抗菌肽的表達量均發生不同程度的變化,如表 1。
表 1. 腸道抗菌肽的分類以及在感染和炎症過程中其含量的變化[12] Table 1. Classification of intestinal antimicrobial peptides and their expression during infection and intestinal inflammation[12]Classes | Names | Species | Producing cells | Expression during infection |
α-Defensins | HD-5, HD-6 | H.s. | Paneth cells | Salmonella↑ CD↓ UC↑ |
Cryptdinl | M.m. | Paneth cells | S. typhimurium↑ | |
CRS | M.m. | Paneth cells | — | |
β-Defensins | hBD1 | H.s. | Enterocytes | Shigella↓ CD↓ UC↓ |
hBD2 | H.s. | Enterocytes | EPEC↑ S. typhimurium↑ UC↑ CD↑ | |
hBD3、hBD4 | H.s. | Enterocytes | Shigella | |
hBD5、hBD6 | H.s. | Enterocytes | — | |
mBD1 | M.m. | Enterocytes | C. rodentium↑ | |
mBD3 | M.m. | Enterocytes | C. rodentium↑ DSS↓ | |
mBD2、mBD4、mBD5 | M.m. | Enterocytes | — | |
Cathelicidins | LL-37/hCAP18 | H.s. | ICEs | Shigella ↓ UC↑ |
CRAMP | M.m. | ICEs | DSS↑L. monocytogenes↑ | |
Other AMP | RegⅢα or HIP/PAP | H.s. | Paneth cells | — |
RegⅢβ | M.m. | Paneth cells | C. rodentium↑ | |
RegⅢγ | M.m. | Paneth cells | Salmonella↑ C. rodentium↑ | |
sPLA2 | 人 | Paneth cells | — | |
CCL20/MIP-3α | H.s./M.m. | ICEs | IECs EPEC↑ UC↑ CD↑ | |
Lysozyme C | H.s. | Paneth cells | — | |
Lysozyme C type P | M.m. | Paneth cells | S. typhimurium↓ UC↑ | |
BPI | M.m. | ICEs | UC↑ CD↑ | |
BPI | H.s. | ICEs | — | |
ANG4 | M.m. | Paneth cells | — | |
RELMβ | H.s./M.m. | Goblet cells | — | |
H.s.: Homo sapiens; M.m.: Mus musculus. |
表選項
1 抗菌肽對機體免疫調節至關重要在小腸黏膜定殖的微生物大概有1014多種,這些共生細菌對人體是有益的,可以通過他們參與營養物的消化吸收、合成人體生長發育所需的維生素、合成限制病原菌生長的物質[13]。在穩定狀態下,共生細菌對宿主是有益的。腸道上皮細胞主要通過模式識別受體和微生物相關分子模式2種方式來監視腸道微生物。模式識別受體一旦激活,就會刺激上皮細胞抗菌肽和黏液的合成和釋放[14-15]。而腸道菌群一旦紊亂或者平衡的微生物菌群打破後,就會干擾腸道上皮細胞,造成炎症反應。在克羅恩病(Crohn』s disease,CD)病患者中發現,一些共生細菌會增加宿主的免疫系統活性。尤其在CD疾病患者中,在慢性炎症性腸病(inflammatory bowel disease,IBD)中發現抗菌肽數量的減少,會加重炎症[16]。此外,周期性牽張造成抗菌肽的下調錶達,也會激發促炎症免疫反應,增加感染和嚴重敗血症的風險[17]。Clay等學者認為腸道菌群和免疫系統之間的互作可能影響Ⅰ型糖尿病發展,微生物、細菌產物、抗菌肽和微生物代謝物都有可能直接促進了炎症[1]。孫嘉等研究發現,胰島β細胞可表達CRAMP。而此類抗菌肽在Ⅰ型糖尿病發病過程中有所缺失,補充外源性CRAMP可通過調節胰島中的促炎型免疫細胞表型、炎症因子表達等機制發揮抗Ⅰ型糖尿病的作用。進一步研究表明,Cathelicidins類抗菌肽的產生受腸道菌群代謝產物短鏈脂肪酸的調控,該研究證實Cathelicidins抗菌肽和自身免疫性糖尿病的關聯,從分子水平揭示了Ⅰ型糖尿病發病機制,並為防治Ⅰ型糖尿病提供了新思路[18]。
2 抗菌肽對腸道菌群結構塑造的重要性最近研究發現,成年小鼠對白色念珠菌定殖具有一定的抗性,結果證明在腸道菌群中的厚壁菌門和擬桿菌門細菌起著關鍵性作用[19]。文章中指出擬桿菌可以增加缺氧誘導因子HIF-1A,從而增加LL-37-CRAMP的分泌,激活宿主自身免疫,減少其定殖。添加鏈黴素後,小鼠腸道菌群減少了0.5個數量級。添加青黴素,腸道菌群減少了3-4個數量級。抗生素處理可以去除厭氧菌後,尤其是多形擬桿菌(Bacteroides thetaiotamicron),造成了白色念珠菌侵染小鼠腸道。同一屬的2種菌對白色念珠菌的定殖影響也是不同的。B. theta可以減少其定殖,而B. fragilis卻不同,原因可能是每種細菌對宿主免疫應答不同,而且B. theta還可以刺激其它類型抗菌肽如RegⅢ產生,這些具有殺死真菌的效果。在缺陷型小鼠模型的研究結果表明,抗菌肽CRAMP基因敲除小鼠後,在結腸中表現出腸炎癥狀,而隨後用葡聚糖硫酸鈉(Dextran sodium sulfate,DSS)處理以後,則患病癥狀進一步加重[20]。當把野生小鼠骨髓細胞移植到敲除小鼠則緩和了結腸炎癥狀。經口服沙門氏菌攻擊後,含有HD-5轉基因的小鼠顯示對沙門氏菌的排斥能力增加[21]。相反基質金屬蛋白酶MMP7缺失的小鼠,喪失了具有生物活性的腸防禦素,失去了清除腸道里的病原菌的能力[22]。而且在2組互補小鼠模型比較中發現,腸道菌群結構同時發生了戲劇性改變。在含有HD-5轉基因小鼠的小腸中,厚壁菌門細菌數量較少,擬桿菌門細菌數量得到增加;而含有MMP7缺陷的小鼠情況正好相反,並且過表達HD-5會造成小腸末端分節絲狀桿菌的顯著性減少和固有層Th17細胞的數量減少[23]。最終結果明確指出腸道抗菌肽可以作為塑造微生物群組成和胃腸道炎症的一個關鍵因素。
3 抗菌肽對畜禽動物機體健康的影響
多項研究強調,直接餵養抗菌肽對豬生長、腸道形態和免疫狀態具有很好的效果。在斷奶仔豬採食過程中添加大腸桿菌產生的細菌素-大腸桿菌素E1,4 d後實驗組與對照組相比,能顯著的改善體重和飼料轉化效率。含有大腸桿菌素E1的飼料也能減少糞便和迴腸中大腸桿菌滴度,同時能減少腹瀉發病率,改善腹瀉的嚴重程度。並且餵食大腸桿菌素E1後,降低了前炎性細胞活素(IL-1β和TNF-α)在豬迴腸中的表達水平[24]。連續6 d餵養重組天蠶素A/D也達到了同樣的效果:提高了生長速率和飼料利用率,降低了腹瀉發生率。對腸結構形態或者氮素能力利用率都沒有產生明顯的影響。經過21 d的牛乳鐵蛋白抗菌肽餵養,提高了仔豬生長性能和降低仔豬的腹瀉率。在仔豬斷奶後連續4周餵養,直接添加人工合成的抗菌肽(AMP-A3或者P5)不僅能提高營養消化性能,還能改善腸道形態和生長性能,並對血清中IgA、IgG和IgM的濃度也不會造成影響[25]。此外,AMP-3和P5還能降低潛在有害細菌梭菌的數量和大腸桿菌群在迴腸、盲腸及糞便中的數量。同樣,在肉雞餵養實驗中也表現出很好的效果。在飼料中添加AMP-3,肉雞體重和飼料轉化率有所增加,肉雞小腸中絨毛高度和絨毛高度與腺窩深度比都有所增加[26]。添加含有重組天蠶素的酵母培養基,可以有效提高肉雞的生長性能,減少空腸和盲腸好氧菌的數量[27]。以上所有的動物實驗都表明添加抗菌肽對動物有益,在生長促進和疾病控制方面可以作為抗生素的替代藥物。
4 抗菌肽對腸道健康的前景與展望由於抗菌肽存在易酶解、產量低、純化困難且合成價格昂貴等問題,使抗菌肽的研究與應用受到了限制。研究表明,小分子化合物丁酸可以誘導防禦素合成和提高腸道中病原菌的清除率,而且不會引起炎症反應[28-29]。這種誘導劑或者含有該種誘導劑不同形式的化合物,作為抗生素的替代品,經濟有效。但這些化合物在促進生長、腸道健康、微生物菌群平衡還未進行相應的動物實驗。探明這些問題,將有助於更清楚、全面地解析疾病、腸道菌群與抗菌肽三者之間相關性。
近年來,在腸道微生態與健康方面的研究受到各國科學家的重視,一些研究結果表明腸道微生物與疾病如癌症、肥胖、神經變性疾病的發生具有一定的相關性,我們在前期的研究中發現環境因素對腸道細菌結構的影響以及對腸道菌群調控的可能性。通過體外發酵系統評估多糖、寡糖類添加劑對腸道菌群結構的調節作用,揭示我國特定食品組份對腸道菌群的調節影響以及對我國居民健康的作用[30-31]。雖然我們對於腸道微生物菌群的構成逐步在增加,但是抗菌肽作為宿主分泌的代謝產物之一,調控並穩定腸道菌群方式和生理功能我們仍不清楚,目前比較明確的是在不同氧濃度、還原劑和pH值下抗菌肽的殺菌能力不同[32-33]。此外,對抗菌肽的研究也主要集中在新型抗菌肽的發現、結構改造、藥效評估以及高效表達水平上,從腸道體內角度來研究抗菌肽、腸道微生物和機體健康之間的互作研究還剛剛起步。相信在不久的將來,隨著對腸道微生物菌群功能的揭秘,一些臨床上的菌群失調導致的肥胖、腸炎、糖尿病和癌症等問題也將迎刃而解。腸道菌群與抗菌肽互作關聯機制的闡明,必將促進人類的健康。
參考文獻[1] | Semenkovich CF, Danska J, Darsow T, Dunne JL, Huttenhower C, Insel RA, McElvaine AT, Ratner RE, Shuldiner AR, Blaser MJ. American diabetes association and JDRF research symposium: diabetes and the microbiome. Diabetes , 2015, 64 (12) : 3967–3977 DOI:10.2337/db15-0597 . |
[2] | Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integrative Medicine , 2014, 13 (6) : 17–22 . |
[3] | Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell , 2014, 158 (6) : 1402–1414 DOI:10.1016/j.cell.2014.08.032 . |
[4] | Robinson K, Deng Z, Hou YQ, Zhang GL. Regulation of the intestinal barrier function by host defense peptides. Frontiers in Veterinary Science , 2015, 2 : 57 . |
[5] | Kaiser V, Diamond G. Expression of mammalian defensin genes. Journal of Leukocyte Biology , 2000, 68 (6) : 779–784 . |
[6] | Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology , 2004, 22 : 181–215 DOI:10.1146/annurev.immunol.22.012703.104603 . |
[7] | Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nature Immunology , 2005, 6 (6) : 551–557 DOI:10.1038/ni1206 . |
[8] | Patil A, Hughes AL, Zhang GL. Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes. Physiological Genomics , 2004, 20 (1) : 1–11 DOI:10.1152/physiolgenomics.00150.2004 . |
[9] | Patil AA, Cai YB, Sang YM, Blecha F, Zhang GL. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiological Genomics , 2005, 23 (1) : 5–17 DOI:10.1152/physiolgenomics.00104.2005 . |
[10] | Lynn DJ, Higgs R, Lloyd AT, O"Farrelly C, Hervé-Grépinet V, Nys Y, Brinkman FSL, Yu PL, Soulier A, Kaiser P, Zhang GL, Lehrer RI. Avian β-defensin nomenclature: a community proposed update. Immunology Letters , 2007, 110 (1) : 86–89 DOI:10.1016/j.imlet.2007.03.007 . |
[11] | Xiao YJ, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang GL. A genome-wide screen identifies a single β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics , 2004, 5 : 56 DOI:10.1186/1471-2164-5-56 . |
[12] | Turnbaugh PJ, Stintzi A. Human health and disease in a microbial world. Frontiers in Microbiology , 2011, 2 : 190 . |
[13] | Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine , 2013, 5 (10) : 1465–1483 DOI:10.1002/emmm.201201773 . |
[14] | Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends in Immunology , 2014, 35 (11) : 507–517 DOI:10.1016/j.it.2014.07.010 . |
[15] | McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology , 2014, 142 (1) : 24–31 DOI:10.1111/imm.2014.142.issue-1 . |
[16] | Wehkamp J, Koslowski M, Wang G, Stange EF. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn"s disease. Mucosal Immunology , 2008, 1 (Suppl 1) : S67–S74 . |
[17] | Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. PeerJ , 2015, 3 : e1483 DOI:10.7717/peerj.1483 . |
[18] | Sun J, Furio L, Mecheri R, van der Does Anne M, Lundeberg E, Saveanu L, Chen YQ, van Endert P, Agerberth B, Diana J. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity , 2015, 43 (2) : 304–317 DOI:10.1016/j.immuni.2015.07.013 . |
[19] | Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan XW, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nature Medicine , 2015, 21 (7) : 808–814 DOI:10.1038/nm.3871 . |
[20] | Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao DZ, Xu H, Gallo R, Dempsey P, Cheng GH, Targan SR, Pothoulakis C. Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology , 2011, 141 (5) : 1852–1863 DOI:10.1053/j.gastro.2011.06.079 . |
[21] | Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature , 2003, 422 (6931) : 522–526 DOI:10.1038/nature01520 . |
[22] | Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science , 1999, 286 (5437) : 113–117 DOI:10.1126/science.286.5437.113 . |
[23] | Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sj?berg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou YJ, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology , 2010, 11 (1) : 76–83 DOI:10.1038/ni.1825 . |
[24] | Cutler SA, Lonergan SM, Cornick N, Johnson AK, Stahl CH. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrobial Agents and Chemotherapy , 2007, 51 (11) : 3830–3835 DOI:10.1128/AAC.00360-07 . |
[25] | Yoon JH, Ingale SL, Kim JS, Kim KH, Lohakare J, Park YK, Park JC, Kwon IK, Chae BJ. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. Journal of the Science of Food and Agriculture , 2013, 93 (3) : 587–592 DOI:10.1002/jsfa.2013.93.issue-3 . |
[26] | Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK, Chae BJ. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. British Poultry Science , 2013, 54 (6) : 738–746 DOI:10.1080/00071668.2013.838746 . |
[27] | Wen LF, He JG. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. British Journal of Nutrition , 2012, 108 (10) : 1756–1763 DOI:10.1017/S0007114511007240 . |
[28] | Sunkara LT, Jiang WY, Zhang GL. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One , 2012, 7 (11) : e49558 DOI:10.1371/journal.pone.0049558 . |
[29] | Zeng XF, Sunkara LT, Jiang WY, Bible M, Carter S, Ma X, Qiao SY, Zhang GL. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One , 2013, 8 (8) : e72922 DOI:10.1371/journal.pone.0072922 . |
[30] | Li MM, Li GS, Shang QS, Chen XX, Liu W, Pi XE, Zhu LY, Yin YS, Yu GL, Wang X. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe , 2016, 39 : 19–25 DOI:10.1016/j.anaerobe.2016.02.003 . |
[31] | Li MM, Li GS, Zhu LY, Yin YS, Zhao XL, Xiang C, Yu GL, Wang X. Isolation and characterization of an agaro- oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One , 2014, 9 (3) : e91106 DOI:10.1371/journal.pone.0091106 . |
[32] | Liu W, Dong SL, Xu F, Wang XQ, Withers TR, Yu HD, Wang X. Effect of intracellular expression of antimicrobial peptide LL-37 on growth of Escherichia coli strain TOP10 under aerobic and anaerobic conditions. Antimicrobial Agents and Chemotherapy , 2013, 57 (10) : 4707–4716 DOI:10.1128/AAC.00825-13 . |
[33] | Schroeder BO, Ehmann D, Precht JC, Castillo PA, Küchler R, Berger J, Schaller M, Stange EF, Wehkamp J. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal Immunology , 2015, 8 (3) : 661–671 DOI:10.1038/mi.2014.100 . |
推薦閱讀: