聽得懂,才智能!語音喚醒技術入門課程來啦

聽得懂,才智能!語音喚醒技術入門課程來啦

對於智能產品的用戶來說,喚醒就是語音交互的第一入口,喚醒效果的好壞直接影響到用戶的第一體驗~

科大訊飛研究院吳國兵老師前幾天就語音喚醒技術給大家開課啦!

1、什麼是語音喚醒?

語音喚醒在學術上被稱為keyword spotting(簡稱KWS),吳老師給它做了一個定義:在連續語流中實時檢測出說話人特定片段。

這裡要注意,檢測的「實時性」是一個關鍵點,語音喚醒的目的就是將設備從休眠狀態激活至運行狀態,所以喚醒詞說出之後,能立刻被檢測出來,用戶的體驗才會更好。

那麼,該怎樣評價語音喚醒的效果呢?通行的指標有四個方面,即喚醒率、誤喚醒、響應時間和功耗水平:

?喚醒率,指用戶交互的成功率,專業術語為召回率,即recall。

?誤喚醒,用戶未進行交互而設備被喚醒的概率,一般按天計算,如最多一天一次。

?響應時間,指從用戶說完喚醒詞後,到設備給出反饋的時間差。

?功耗水平,即喚醒系統的耗電情況。很多智能設備是通過電池供電,需要滿足長時續航,對功耗水平就比較在意。

2、語音喚醒的技術路線

經過長時間的發展,語音喚醒的技術路線大致可歸納為三代,特點如下:

第一代:基於模板匹配的KWS

訓練和測試的步驟比較簡單,訓練就是依據註冊語音或者說模板語音進行特徵提取,構建模板。測試時,通過特徵提取生成特徵序列,計算測試的特徵序列和模板序列的距離,基於此判斷是否喚醒。

第二代:基於HMM-GMM的KWS

將喚醒任務轉換為兩類的識別任務,識別結果為keyword和non-keyword。

第三代:基於神經網路的方案

神經網路方案又可細分為幾類,第一類是基於HMM的KWS,同第二代喚醒方案不同之處在於,聲學模型建模從GMM轉換為神經網路模型。 第二類融入神經網路的模板匹配,採用神經網路作為特徵提取器。第三類是基於端到端的方案,輸入語音,輸出為各喚醒的概率,一個模型解決。

3、語音喚醒的難點

語音喚醒的難點,主要是低功耗要求和高效果需求之間的矛盾。

一方面,目前很多智能設備採用的都是低端晶元,同時採用電池供電,這就要求喚醒所消耗的能源要儘可能的少。

另一方面,用戶對體驗效果的追求越來越高。目前語音喚醒主要應用於C端,用戶群體廣泛,且要進行大量遠場交互,對喚醒能力提出了很高要求。

要解決兩者之間的矛盾,對於低功耗需求,我們採用模型深度壓縮策略,減少模型大小並保證效果下降幅度可控;而對於高效果需求,一般是通過模型閉環優化來實現。先提供一個效果可用的啟動模型,隨著用戶的使用,進行閉環迭代更新,整個過程完成自動化,無需人工參與。

4、語音喚醒的典型應用

語音喚醒的應用領域十分廣泛,主要是C端產品,比如機器人、音箱、汽車等。比較有代表性的應用模式有如下幾種:

?傳統語音交互:先喚醒設備,等設備反饋後(提示音或亮燈),用戶認為設備被喚醒了,再發出語音控制命令,缺點在於交互時間長。

?One-shot:直接將喚醒詞和工作命令一同說出,如「叮咚叮咚,我想聽周杰倫的歌」,客戶端會在喚醒後直接啟動識別以及語義理解等服務,縮短交互時間。

?Zero-shot:將常用用戶指定設置為喚醒詞,達到用戶無感知喚醒,例如直接對車機說「導航到科大訊飛」,這裡將一些高頻前綴的說法設置成喚醒詞。

?多喚醒:主要滿足用戶個性化的需求,給設備起多個名字。

?所見即所說:新型的AIUI交互方式,例如用戶對車機發出「導航到海底撈」指令後,車機上會顯示「之心城海底撈」「銀泰城海底撈」等選項,用戶只需說「之心城」或「銀泰城」即可發出指令。

好啦,關於「語音喚醒」今天就先介紹這麼多,想要仔細學習課程的同學,可以掃描下方二維碼,關注「訊飛AI大學」查看更多課程哦~

weixin.qq.com/r/nzoAGIj (二維碼自動識別)


推薦閱讀:

科大訊飛「解鎖」黑科技,助力BFA
訊飛聽見出APP版了?!快把錄音整理神器裝進口袋裡!
胖·師說|戊戌新年,三類小工具助力智慧學習
科大訊飛:請不要曲解我們的財報!

TAG:科大訊飛 | 語音 | 人工智慧 |