Semantic Video CNNs through Representation Warping
05-25
Semantic Video CNNs through Representation Warping
來自專欄 計算機視覺與深度學習
17年的ICCV.
這篇文章提出了對視頻分割通用的網路module, 叫做NetWarp, 使用快速的optical flow設計了module結構, 來提高準確率並且可以end-to-end train.
NetWarp的結構:
主要的步驟有:
1.flow Computation(使用DIS-Flow)
2.Flow Transformation(We concatenate the original two channel flow, the previous and present frame images, and the difference of the two frames. This results in a 11 channel tensor as an input to the FlowCNN.)
3.Warping Representations
4.Combination of Representations
最後的結構在cityscapes上也是提高了1個多點:
推薦閱讀:
TAG:計算機視覺 | 深度學習DeepLearning |