基於表達矩陣繪圖
05-24
基於表達矩陣繪圖
histogramp=ggplot(exprSet_L,aes(value,fill=group))+geom_histogram(bins = 200)+facet_wrap(~sample, nrow = 4)print(p)boxplotp=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()print(p)density
The number of up gene is ,nrow(DEG[DEG$change ==UP,]) ,
The number of down gene is ,nrow(DEG[DEG$change ==DOWN,]))g = ggplot(data=DEG, aes(x=logFC, y=-log10(P.Value), color=change)) + geom_point(alpha=0.4, size=1.75) + theme_set(theme_set(theme_bw(base_size=20)))+ xlab("log2 fold change") + ylab("-log10 p-value") + ggtitle( this_tile ) + theme(plot.title = element_text(size=15,hjust = 0.5))+ scale_colour_manual(values = c(blue,black,red)) ## corresponding to the levels(res$change)print(g)
推薦閱讀:
基於表達矩陣繪圖
basic visualization for expression matrix安裝並載入必須的packages
如果你還沒有安裝,就運行下面的代碼安裝:BiocInstaller::biocLite(CLL)install.packages(corrplot)install.packages(gpairs)
install.packages(vioplot)如果你安裝好了,就直接載入它們即可library(CLL)library(ggplot2)library(reshape2)library(gpairs)library(corrplot)載入內置的測試數據:
data(sCLLex)sCLLex=sCLLex[,1:8] ## 樣本太多,我就取前面8個
group_list=sCLLex$DiseaseexprSet=exprs(sCLLex)head(exprSet)## CLL11.CEL CLL12.CEL CLL13.CEL CLL14.CEL CLL15.CEL CLL16.CEL## 1000_at 5.743132 6.219412 5.523328 5.340477 5.229904 4.920686## 1001_at 2.285143 2.291229 2.287986 2.295313 2.662170 2.278040## 1002_f_at 3.309294 3.318466 3.354423 3.327130 3.365113 3.568353## 1003_s_at 1.085264 1.117288 1.084010 1.103217 1.074243 1.073097## 1004_at 7.544884 7.671801 7.474025 7.152482 6.902932 7.368660## 1005_at 5.083793 7.610593 7.631311 6.518594 5.059087 4.855161
## CLL17.CEL CLL18.CEL## 1000_at 5.325348 4.826131## 1001_at 2.350796 2.325163## 1002_f_at 3.502440 3.394410## 1003_s_at 1.091264 1.076470## 1004_at 6.456285 6.824862## 1005_at 5.176975 4.874563group_list## [1] progres. stable progres. progres. progres. progres. stable stable## Levels: progres. stable
接下來進行一系列繪圖操作
主要用到ggplot2這個包,需要把我們的寬矩陣用reshape2包變成長矩陣library(reshape2)exprSet_L=melt(exprSet)colnames(exprSet_L)=c(probe,sample,value)exprSet_L$group=rep(group_list,each=nrow(exprSet))head(exprSet_L)## probe sample value group## 1 1000_at CLL11.CEL 5.743132 progres.## 2 1001_at CLL11.CEL 2.285143 progres.
## 3 1002_f_at CLL11.CEL 3.309294 progres.## 4 1003_s_at CLL11.CEL 1.085264 progres.## 5 1004_at CLL11.CEL 7.544884 progres.## 6 1005_at CLL11.CEL 5.083793 progres.boxplotp=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()print(p)vioplot#library(vioplot)
#?vioplot#vioplot(exprSet)#do.call(vioplot,c(unname(exprSet),col=red,drawRect=FALSE,names=list(names(exprSet))))p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_violin()print(p)boxplotp=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()print(p)p=ggplot(exprSet_L,aes(value,col=group))+geom_density()+facet_wrap(~sample, nrow = 4)
print(p)p=ggplot(exprSet_L,aes(value,col=group))+geom_density() print(p)gpairslibrary(gpairs)gpairs(exprSet #,upper.pars = list(scatter = stats)#,lower.pars = list(scatter = corrgram)
)clusterout.dist=dist(t(exprSet),method=euclidean)out.hclust=hclust(out.dist,method=complete)plot(out.hclust)PCApc <- prcomp(t(exprSet),scale=TRUE)pcx=data.frame(pc$x)pcr=cbind(samples=rownames(pcx),group_list, pcx) p=ggplot(pcr, aes(PC1, PC2))+geom_point(size=5, aes(color=group_list)) + geom_text(aes(label=samples),hjust=-0.1, vjust=-0.3)print(p)heatmapchoose_gene=names(sort(apply(exprSet, 1, mad),decreasing = T)[1:50])choose_matrix=exprSet[choose_gene,]choose_matrix=scale(choose_matrix)heatmap(choose_matrix)library(gplots)## ## Attaching package: gplots## The following object is masked from package:stats:## ## lowessheatmap.2(choose_matrix)library(pheatmap)pheatmap(choose_matrix)DEG && volcano plotlibrary(limma)## ## Attaching package: limma## The following object is masked from package:BiocGenerics:## ## plotMAdesign=model.matrix(~factor(group_list))fit=lmFit(exprSet,design)fit=eBayes(fit)DEG=topTable(fit,coef=2,n=Inf)with(DEG, plot(logFC, -log10(P.Value), pch=20, main="Volcano plot"))logFC_cutoff <- with(DEG,mean(abs( logFC)) + 2*sd(abs( logFC)) )DEG$change = as.factor(ifelse(DEG$P.Value < 0.05 & abs(DEG$logFC) > logFC_cutoff, ifelse(DEG$logFC > logFC_cutoff ,UP,DOWN),NOT) )this_tile <- paste0(Cutoff for logFC is ,round(logFC_cutoff,3),The number of up gene is ,nrow(DEG[DEG$change ==UP,]) ,
The number of down gene is ,nrow(DEG[DEG$change ==DOWN,]))g = ggplot(data=DEG, aes(x=logFC, y=-log10(P.Value), color=change)) + geom_point(alpha=0.4, size=1.75) + theme_set(theme_set(theme_bw(base_size=20)))+ xlab("log2 fold change") + ylab("-log10 p-value") + ggtitle( this_tile ) + theme(plot.title = element_text(size=15,hjust = 0.5))+ scale_colour_manual(values = c(blue,black,red)) ## corresponding to the levels(res$change)print(g)
ggplot畫圖是可以切換主題的
其實繪圖有非常多的細節可以調整,還是略微有點繁瑣的!p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()print(p)p=p+stat_summary(fun.y="mean",geom="point",shape=23,size=3,fill="red")p=p+theme_set(theme_set(theme_bw(base_size=20)))p=p+theme(text=element_text(face=bold),axis.text.x=element_text(angle=30,hjust=1),axis.title=element_blank())print(p)可以很明顯看到,換了主題之後的圖美觀一些。推薦閱讀:
※矩陣和向量求導
※矩陣論筆記(2)
※語料庫語言學基礎知識:矩陣(Haskell版)
※gal2mat:將gal權重文件轉成n-by-n矩陣