積分練習草稿10

積分練習草稿10

309.

[egin{gathered}  int {frac{{operatorname{arccot} sqrt x }}{{sqrt x  + sqrt {{x^3}} }}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{{operatorname{arccot} sqrt x }}{{sqrt x left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = operatorname{arccot} sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{2sqrt x left( {x + 1} 
ight)}}, hfill \   =  - 2int {u{kern 1pt} {	ext{d}}u}  =  - {u^2} hfill \   =  - {operatorname{arccot} ^2}sqrt x  + C hfill \ end{gathered} ]

310.

[egin{gathered}  int {frac{{sqrt x }}{{1 + x}}} {kern 1pt} {	ext{d}}x hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},x = {u^2}, hfill \   = 2int {frac{{{u^2}}}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {u^2} = {u^2} + 1 - 1, hfill \   = 2left( {int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u} } 
ight) hfill \   = 2u - 2arctan u hfill \   = 2sqrt x  - 2arctan sqrt x  + C hfill \   = 2left( {sqrt x  - arctan sqrt x } 
ight) + C hfill \ end{gathered} ]

311.

[egin{gathered}  int {frac{x}{{sqrt {1 + {x^2}} }}} {kern 1pt} {	ext{d}}x hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{1}{2}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{2} 	imes 2sqrt u  hfill \   = sqrt {{x^2} + 1}  + C hfill \ end{gathered} ]

312.

[egin{gathered}  int {{{	an }^3}x{kern 1pt} {	ext{d}}x}  hfill \   = int {left( {{{sec }^2}x - 1} 
ight)	an x{kern 1pt} {	ext{d}}x}  hfill \  	an x = frac{{sin x}}{{cos x}},sec x = frac{1}{{cos x}}, hfill \   = int { - frac{{{{cos }^2}x - 1}}{{{{cos }^3}x}}sin x{kern 1pt} {	ext{d}}x}  hfill \  u = cos x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - sin x, hfill \   = int {frac{{{u^2} - 1}}{{{u^3}}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^3}}}{kern 1pt} {	ext{d}}u}  hfill \   = ln u + frac{1}{{2{u^2}}} hfill \   = ln left| {cos x} 
ight| + frac{1}{{2{{cos }^2}x}} + C hfill \   = frac{{ln left( {1 - {{sin }^2}x} 
ight)}}{2} - frac{1}{{2{{sin }^2}x - 2}} + C hfill \ end{gathered} ]

313.

[egin{gathered}  int {frac{{ln x}}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,v = frac{1}{{sqrt x }}, hfill \  u = frac{1}{x},v = 2sqrt x , hfill \   = 2sqrt x ln x - int {frac{2}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \   = 2sqrt x ln x - 4sqrt x  + C hfill \   = 2sqrt x left( {ln x - 2} 
ight) + C hfill \ end{gathered} ]

314.

[egin{gathered}  int {frac{1}{{1 + x + {x^2}}}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{1}{{{{left( {x + frac{1}{2}} 
ight)}^2} + frac{3}{4}}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{2x + 1}}{{sqrt 3 }},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{2}{{sqrt 3 }}, hfill \   = frac{2}{{sqrt 3 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{2arctan u}}{{sqrt 3 }} hfill \   = frac{{2arctan frac{{2x + 1}}{{sqrt 3 }}}}{{sqrt 3 }} + C hfill \  intlimits_0^{ + infty } {frac{1}{{1 + x + {x^2}}}} {kern 1pt} {	ext{d}}x = frac{{2pi }}{{3sqrt 3 }} hfill \ end{gathered} ]

315.

[egin{gathered}  int {frac{{arctan {{	ext{e}}^x}}}{{{{	ext{e}}^{2x}}}}} {kern 1pt} {	ext{d}}x = int {{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}{kern 1pt} {	ext{d}}x}  hfill \  u = arctan {{	ext{e}}^x},v = {{	ext{e}}^{ - 2x}}, hfill \  u = frac{{{{	ext{e}}^x}}}{{{{	ext{e}}^{2x}} + 1}},v =  - frac{{{{	ext{e}}^{ - 2x}}}}{2}, hfill \   =  - int { - frac{{{{	ext{e}}^{ - x}}}}{{2left( {{{	ext{e}}^{2x}} + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  {	ext{u}} =  - {	ext{x}}, hfill \   =  - frac{1}{2}int {frac{{{{	ext{e}}^u}}}{{{{	ext{e}}^{ - 2u}} + 1}}{kern 1pt} {	ext{d}}u}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \ end{gathered} ]

[egin{gathered}   =  - frac{1}{2}int {frac{{{{	ext{e}}^{3u}}}}{{{{	ext{e}}^{2u}} + 1}}{kern 1pt} {	ext{d}}u}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  v = {{	ext{e}}^u},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {{	ext{e}}^u},{{	ext{e}}^{2u}} = {v^2},{{	ext{e}}^{3u}} = {v^3}, hfill \   =  - frac{1}{2}int {frac{{{v^2}}}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \   =  - frac{1}{2}left( {int {1{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v} } 
ight) - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \   =  - frac{1}{2}v + frac{1}{2}arctan v - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \ end{gathered} ]

[egin{gathered}   =  - frac{1}{2}{{	ext{e}}^u} + frac{1}{2}arctan {{	ext{e}}^u} - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  arctan {{	ext{e}}^u} = arctan {{	ext{e}}^{ - x}} = operatorname{arccot} {{	ext{e}}^x}, hfill \   =  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} + frac{{operatorname{arccot} {{	ext{e}}^x}}}{2} - frac{{{{	ext{e}}^{ - x}}}}{2} + C hfill \ end{gathered} ]

316.

[egin{gathered}  int {{{arcsin }^2}x{kern 1pt} {	ext{d}}x}  hfill \  u = arcsin x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{sqrt {1 - {x^2}} }}, hfill \  {x^2} = {sin ^2}u,{arcsin ^2}x = {u^2}, hfill \  {sin ^2}x = 1 - {cos ^2}x, hfill \   = int {{u^2}cos u{kern 1pt} {	ext{d}}u}  hfill \  f = {u^2},g = cos u, hfill \  f = {	ext{2u}},g = sin u, hfill \   = {u^2}sin u - int {2usin u{kern 1pt} {	ext{d}}u}  hfill \  f = {	ext{u}},g = sin u, hfill \  f = 1,g =  - cos u, hfill \   = {u^2}sin u - 2left( { - int { - cos u{kern 1pt} {	ext{d}}u}  - ucos u} 
ight) hfill \   = {u^2}sin u - 2sin u + 2ucos u hfill \  sin u = sin left( {arcsin x} 
ight) = x,cos u = cos left( {arcsin x} 
ight) = sqrt {1 - {x^2}} , hfill \   = x{arcsin ^2}x + 2sqrt {1 - {x^2}} arcsin x - 2x + C hfill \ end{gathered} ]

317.

[egin{gathered}  int {frac{1}{{{a^2}{{sin }^2}x + {b^2}{{cos }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{left( {{a^2} - {b^2}} 
ight){{sin }^2}x + {b^2}}}{kern 1pt} {	ext{d}}x}  hfill \  sin x = frac{{	an x}}{{sec x}},{sec ^2}x = {	an ^2}x + 1, hfill \   = int {{{sec }^2}xfrac{1}{{{a^2}{{	an }^2}x + {b^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{{{a^2}{u^2} + {b^2}}}{kern 1pt} {	ext{d}}u}  hfill \  v = frac{{au}}{b},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{a}{b}, hfill \   = frac{1}{{ab}}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  hfill \   = frac{{arctan v}}{{ab}} = frac{{arctan frac{{au}}{b}}}{{ab}} hfill \   = frac{{arctan frac{{a	an x}}{b}}}{{ab}} + C hfill \ end{gathered} ]

318.

[egin{gathered}  int {frac{1}{{1 + sin x}}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{{{{sec }^2}frac{x}{2}}}{{{{left( {	an frac{x}{2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an frac{x}{2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{{{sec }^2}frac{x}{2}}}{2}, hfill \   = 2int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  =  - frac{2}{u} hfill \   =  - frac{2}{{	an frac{x}{2} + 1}} + C hfill \ end{gathered} ]

319.

[egin{gathered}  int {frac{{xsqrt x  + 1}}{{sqrt x  + 1}}} {kern 1pt} {	ext{d}}x hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},{x^{frac{3}{2}}} = {u^3}, hfill \   = 2int {uleft( {{u^2} - u + 1} 
ight){kern 1pt} {	ext{d}}u}  hfill \   = 2left( {int {{u^3}{kern 1pt} {	ext{d}}u}  - int {{u^2}{kern 1pt} {	ext{d}}u}  + int {u{kern 1pt} {	ext{d}}u} } 
ight) hfill \   = 2left( {frac{{{u^4}}}{4} - frac{{{u^3}}}{3} + frac{{{u^2}}}{2}} 
ight) hfill \   = frac{{{u^4}}}{2} - frac{{2{u^3}}}{3} + {u^2} hfill \   = frac{{{x^2}}}{2} - frac{{2{x^{frac{3}{2}}}}}{3} + x + C hfill \   = frac{{3{x^2} - 4xsqrt x  + 6x}}{6} + C hfill \ end{gathered} ]

320.

[egin{gathered}  int {frac{1}{{{{left( {cos x + sin x} 
ight)}^2}}}} {kern 1pt} {	ext{d}}x hfill \  sin x = frac{{	an x}}{{sec x}},cos x = frac{1}{{sec x}}, hfill \  {sec ^2}x = {	an ^2}x + 1, hfill \   = int {{{sec }^2}xfrac{1}{{{{	an }^2}x + 2	an x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{{{u^2} + 2u + 1}}{kern 1pt} {	ext{d}}u}  = int {frac{1}{{{{left( {u + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} + {	ext{1}}, hfill \   = int {frac{1}{{{v^2}}}{kern 1pt} {	ext{d}}v}  =  - frac{1}{v} hfill \   =  - frac{1}{{u + 1}} hfill \   =  - frac{1}{{	an x + 1}} + C hfill \ end{gathered} ]

321.

[egin{gathered}  int {frac{{sin 	heta }}{{1 + sin 	heta }}} {kern 1pt} {	ext{d}}	heta  hfill \  sin 	heta  = sin 	heta  + 1 - 1, hfill \   = int {1{kern 1pt} {	ext{d}}	heta }  - int {frac{1}{{sin 	heta  + 1}}{kern 1pt} {	ext{d}}	heta }  hfill \   = 	heta  - int {frac{{{{sec }^2}frac{	heta }{2}}}{{{{left( {	an frac{	heta }{2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}	heta }  hfill \  u = 	an frac{	heta }{2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}	heta }} = frac{{{{sec }^2}frac{	heta }{2}}}{2}, hfill \   = 	heta  - 2int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = 	heta  + frac{2}{u} hfill \   = 	heta  + frac{2}{{	an frac{	heta }{2} + 1}} + C hfill \ end{gathered} ]

322.

[egin{gathered}  int {frac{{cos 	heta }}{{sin 	heta  + cos 	heta }}} {kern 1pt} {	ext{d}}	heta  hfill \  cos 	heta  = frac{1}{2}left( {sin 	heta  + cos 	heta } 
ight) + frac{1}{2}left( {cos 	heta  - sin 	heta } 
ight), hfill \   = frac{1}{2}int {1{kern 1pt} {	ext{d}}	heta }  - frac{1}{2}int {frac{{sin 	heta  - cos 	heta }}{{sin 	heta  + cos 	heta }}{kern 1pt} {	ext{d}}	heta }  hfill \  u = sin 	heta  + cos 	heta ,frac{{{	ext{d}}u}}{{{	ext{d}}	heta }} = cos 	heta  - sin 	heta , hfill \   = frac{1}{2}	heta  + frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  hfill \   = frac{	heta }{2} + frac{{ln u}}{2} hfill \   = frac{{ln left| {sin 	heta  + cos 	heta } 
ight|}}{2} + frac{x}{2} + C hfill \   = frac{{ln left| {sin 	heta  + cos 	heta } 
ight| + 	heta }}{2} + C hfill \ end{gathered} ]

323.

[egin{gathered}  int {sqrt {{{left( {1 - {x^2}} 
ight)}^3}} {kern 1pt} {	ext{d}}x}  hfill \  x = sin u,u = arcsin x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = cos u, hfill \   = int {cos u{{left( {1 - {{sin }^2}u} 
ight)}^{frac{3}{2}}}{kern 1pt} {	ext{d}}u}  hfill \   = int {{{cos }^4}u{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{{cos 4u + 4cos 2u + 3}}{8}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{8}int {cos 4u{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {cos 2u{kern 1pt} {	ext{d}}u}  + frac{3}{8}int {1{kern 1pt} {	ext{d}}u}  hfill \   = frac{{sin 4u}}{{32}} + frac{{sin 2u}}{4} + frac{{3u}}{8} hfill \  sin 2u = sin left( {2arcsin x} 
ight) = 2xsqrt {1 - {x^2}} , hfill \   = frac{{sin left( {4arcsin x} 
ight)}}{{32}} + frac{{3arcsin x}}{8} + frac{{xsqrt {1 - {x^2}} }}{2} + C hfill \   =  - frac{{sqrt {1 - {x^2}} left( {2{x^3} - 5x} 
ight) - 3arcsin x}}{8} + C hfill \ end{gathered} ]

[intlimits_0^1 {sqrt {{{left( {1 - {x^2}} 
ight)}^3}} } {kern 1pt} {	ext{d}}x = frac{{3pi }}{{16}}]

324.

[egin{gathered}  int {{{	ext{e}}^{ - x}}sin 2x{kern 1pt} {	ext{d}}x}  hfill \  u = sin 2x,v = {{	ext{e}}^{ - x}}, hfill \  u = 2cos 2x,v =  - {{	ext{e}}^{ - x}}, hfill \   =  - int { - 2{{	ext{e}}^{ - x}}cos 2x{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}sin 2x hfill \  u = 2cos 2x,v =  - {{	ext{e}}^{ - x}}, hfill \  u =  - 4sin 2x,v = {{	ext{e}}^{ - x}}, hfill \   = int { - 4{{	ext{e}}^{ - x}}sin 2x{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}sin 2x - 2{{	ext{e}}^{ - x}}cos 2x hfill \   = frac{{ - {{	ext{e}}^{ - x}}sin 2x - 2{{	ext{e}}^{ - x}}cos 2x}}{5} + C hfill \ end{gathered} ]

325.

[egin{gathered}  int {sqrt {cos x - {{cos }^3}x} {kern 1pt} {	ext{d}}x}  hfill \   = int {sqrt {cos x} sin x{kern 1pt} {	ext{d}}x}  hfill \  u = cos x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - sin x, hfill \   =  - int {sqrt u {kern 1pt} {	ext{d}}u}  =  - frac{{2{u^{frac{3}{2}}}}}{3} hfill \   =  - frac{{2{{cos }^{frac{3}{2}}}x}}{3} + C hfill \  intlimits_0^pi  {sqrt {cos x - {{cos }^3}x} } {kern 1pt} {	ext{d}}x = frac{2}{3} hfill \ end{gathered} ]

326.

[egin{gathered}  int x cos frac{x}{3}{kern 1pt} {	ext{d}}x hfill \  u = frac{x}{3}, hfill \   = 9int {ucos u{kern 1pt} {	ext{d}}u}  hfill \  f = {	ext{u}},g = cos u, hfill \  f = 1,g = sin u, hfill \   = 9left( {usin u - int {sin u{	ext{d}}u} } 
ight) hfill \   = 9left( {usin u + cos u} 
ight) hfill \   = 3xsin frac{x}{3} + 9cos frac{x}{3} + C hfill \ end{gathered} ]

327.

[egin{gathered}  int {frac{1}{{{{	ext{e}}^x} + {{	ext{e}}^{frac{x}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{2}, hfill \   = 2int {frac{1}{{{{	ext{e}}^{2u}} + {{	ext{e}}^u}}}{kern 1pt} {	ext{d}}u}  hfill \  v = {{	ext{e}}^u},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {{	ext{e}}^u},{{	ext{e}}^{2u}} = {v^2}, hfill \   = 2int {frac{1}{{{v^2}left( {v + 1} 
ight)}}{kern 1pt} {	ext{d}}v}  hfill \  frac{1}{{{v^2}left( {v + 1} 
ight)}} = frac{A}{v} + frac{B}{{{v^2}}} + frac{C}{{v + 1}}, hfill \   = 2int {left( {frac{1}{{v + 1}} - frac{1}{v} + frac{1}{{{v^2}}}} 
ight){kern 1pt} {	ext{d}}v}  hfill \   = 2left[ {ln left( {v + 1} 
ight) - ln v - frac{1}{v}} 
ight] hfill \  ln {{	ext{e}}^u} = u, hfill \   = 2ln left( {{{	ext{e}}^u} + 1} 
ight) - 2{{	ext{e}}^{ - u}} - 2u hfill \   = 2ln left( {{{	ext{e}}^{frac{x}{2}}} + 1} 
ight) - 2{{	ext{e}}^{ - frac{x}{2}}} - x + C hfill \ end{gathered} ]

328.

[egin{gathered}  int {frac{{{{left( {ln x + 1} 
ight)}^{2012}}}}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{x}, hfill \   = int {{u^{2012}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{u^{2013}}}}{{2013}} hfill \   = frac{{{{left( {ln x + 1} 
ight)}^{2013}}}}{{2013}} + C hfill \ end{gathered} ]

329.

[egin{gathered}  int {frac{1}{{9 - {x^2}}}} ln left( {frac{{3 + x}}{{3 - x}}} 
ight){kern 1pt} {	ext{d}}x hfill \   = int {frac{{ln left( {frac{{ - x - 3}}{{x - 3}}} 
ight)}}{{9 - {x^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = ln left( {frac{{ - x - 3}}{{x - 3}}} 
ight),frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{left[ { - frac{1}{{x - 3}} - frac{{ - x - 3}}{{{{left( {x - 3} 
ight)}^2}}}} 
ight]left( {x - 3} 
ight)}}{{ - x - 3}}, hfill \   = frac{1}{6}int {u{kern 1pt} {	ext{d}}u}  = frac{{{u^2}}}{{12}} hfill \   = frac{{{{ln }^2}left( {frac{{ - x - 3}}{{x - 3}}} 
ight)}}{{12}} + C hfill \ end{gathered} ]

330.

[egin{gathered}  int {frac{{{{	ext{e}}^x}}}{{1 + {{	ext{e}}^x}}}} {kern 1pt} {	ext{d}}x hfill \  u = {{	ext{e}}^x} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {{	ext{e}}^x}, hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = ln u hfill \   = ln left( {{{	ext{e}}^x} + 1} 
ight) + C hfill \  intlimits_{ - 1}^1 {frac{{{{	ext{e}}^x}}}{{1 + {{	ext{e}}^x}}}} {kern 1pt} {	ext{d}}x = 1 hfill \ end{gathered} ]

331.

[egin{gathered}  int {ln left( {x - 1} 
ight){kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} - {	ext{1}}, hfill \   = int {ln u{kern 1pt} {	ext{d}}u}  hfill \  f = ln u,g = 1, hfill \  f = frac{1}{u},g = u, hfill \   = uln u - int {1{kern 1pt} {	ext{d}}u}  hfill \   = uln u - u hfill \   =  - x + left( {x - 1} 
ight)ln left( {x - 1} 
ight) + 1 + C hfill \   = left[ {ln left( {x - 1} 
ight) - 1} 
ight]left( {x - 1} 
ight) + C hfill \ end{gathered} ]

332.

[egin{gathered}  int {frac{{sin xcos x}}{{{{sin }^4}x + {{cos }^4}x}}} {kern 1pt} {	ext{d}}x hfill \  sin x = frac{{	an x}}{{sec x}},cos x = frac{1}{{sec x}}, hfill \  {sec ^2}x = {	an ^2}x + 1, hfill \   = int {{{sec }^2}xcdotfrac{{	an x}}{{{{	an }^4}x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{u}{{{u^4} + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = {u^2},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 2u, hfill \   = frac{1}{2}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  = frac{{arctan v}}{2} hfill \   = frac{{arctan {u^2}}}{2} hfill \   = frac{{arctan left( {{{	an }^2}x} 
ight)}}{2} + C hfill \   =  - frac{{arctan left( {cos 2x} 
ight)}}{2} + C hfill \ end{gathered} ]

333.

[egin{gathered}  int {frac{1}{2}} left( {frac{1}{{1 + x}} + frac{{1 - x}}{{1 + {x^2}}}} 
ight){kern 1pt} {	ext{d}}x hfill \   = int {frac{{frac{{1 - x}}{{{x^2} + 1}} + frac{1}{{x + 1}}}}{2}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {frac{1}{{x + 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {frac{{x - 1}}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {frac{1}{{x + 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{2}left( {int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x} } 
ight) hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{1}{2}ln left( {x + 1} 
ight) - frac{1}{2}left( {frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - arctan x} 
ight) hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left| {x + 1} 
ight|}}{2} - frac{{ln left( {{x^2} + 1} 
ight)}}{4} + frac{{arctan x}}{2} + C hfill \  intlimits_0^{ + infty } {frac{1}{2}} left( {frac{1}{{1 + x}} + frac{{1 - x}}{{1 + {x^2}}}} 
ight){kern 1pt} {	ext{d}}x = frac{pi }{4} hfill \ end{gathered} ]

334.

[egin{gathered}  int {cos } x{{	ext{e}}^{sin x}}{kern 1pt} {	ext{d}}x hfill \  u = sin x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = cos x, hfill \   = int {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  = {{	ext{e}}^u} hfill \   = {{	ext{e}}^{sin x}} + C hfill \ end{gathered} ]

335.

[egin{gathered}  int {tsin wt{kern 1pt} {	ext{d}}t}  hfill \  u = {	ext{t}},v = sin wt, hfill \  u = 1,v =  - frac{{cos wt}}{omega }, hfill \   =  - int { - frac{{cos wt}}{omega }{kern 1pt} {	ext{d}}t}  - frac{{tcos wt}}{omega } hfill \  {	ext{u}} = omega {	ext{t}}, hfill \   = frac{1}{{{omega ^2}}}int {cos u{kern 1pt} {	ext{d}}u}  - frac{{tcos wt}}{omega } hfill \   = frac{1}{{{omega ^2}}}sin u - frac{{tcos wt}}{omega } hfill \   = frac{{sin wt}}{{{omega ^2}}} - frac{{tcos wt}}{omega } + C hfill \   = frac{{sin wt - omega tcos wt}}{{{omega ^2}}} + C hfill \  intlimits_0^{frac{{2pi }}{omega }} t sin wt{kern 1pt} {	ext{d}}t =  - frac{{2pi }}{{{omega ^2}}} hfill \ end{gathered} ]

336.

[egin{gathered}  int {left| {ln x} 
ight|{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln x}}{{left| {ln x} 
ight|}}int {ln x{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln xleft( {xln x - x} 
ight)}}{{left| {ln x} 
ight|}} + C hfill \  intlimits_{frac{1}{{	ext{e}}}}^{	ext{e}} {left| {ln left( x 
ight)} 
ight|} {kern 1pt} {	ext{d}}x =  hfill \ end{gathered} ]

337.

[egin{gathered}  int {frac{{sqrt {1 - {x^2}} }}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {1 - {x^2}} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{x}{{sqrt {1 - {x^2}} }}, hfill \   = int {frac{{{u^2}}}{{{u^2} - 1}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{{u^2} - 1}}{kern 1pt} {	ext{d}}u}  + int {1{kern 1pt} {	ext{d}}u}  hfill \  frac{1}{{{u^2} - 1}} = frac{A}{{u + 1}} + frac{B}{{u - 1}}, hfill \   = frac{1}{2}int {frac{1}{{u - 1}}{kern 1pt} {	ext{d}}u}  - frac{1}{2}int {frac{1}{{u + 1}}{kern 1pt} {	ext{d}}u}  + u hfill \   =  - frac{{ln left( {u + 1} 
ight)}}{2} + u + frac{{ln left( {u - 1} 
ight)}}{2} hfill \   = frac{{ln left| {sqrt {1 - {x^2}}  - 1} 
ight|}}{2} - frac{{ln left( {sqrt {1 - {x^2}}  + 1} 
ight)}}{2} + sqrt {1 - {x^2}}  + C hfill \   = frac{{ln left| {sqrt {1 - {x^2}}  - 1} 
ight| - ln left( {sqrt {1 - {x^2}}  + 1} 
ight)}}{2} + sqrt {1 - {x^2}}  + C hfill \ end{gathered} ]

338.

[egin{gathered}  int {left( {1 - {{sin }^3}	heta } 
ight){kern 1pt} {	ext{d}}	heta }  hfill \   = int {1{kern 1pt} {	ext{d}}	heta }  - int {{{sin }^3}	heta {kern 1pt} {	ext{d}}	heta }  hfill \   = 	heta  - int {left( {1 - {{cos }^2}	heta } 
ight)sin 	heta {kern 1pt} {	ext{d}}	heta }  hfill \  u = cos 	heta ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - sin 	heta , hfill \   = 	heta  - left( {int {{u^2}{kern 1pt} {	ext{d}}u}  - int {1{kern 1pt} {	ext{d}}u} } 
ight) hfill \   = 	heta  - left( {frac{{{u^3}}}{3} - u} 
ight) hfill \   =  - frac{{{{cos }^3}	heta }}{3} + cos 	heta  + 	heta  + C hfill \  intlimits_0^pi  {left( {1 - {{sin }^3}	heta {kern 1pt} } 
ight)} {	ext{d}}	heta  = frac{{3pi  - 4}}{3} hfill \ end{gathered} ]

339.

[egin{gathered}  int {frac{1}{{2 + cos x}}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{{{{sec }^2}frac{x}{2}}}{{{{	an }^2}frac{x}{2} + 3}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{	an frac{x}{2}}}{{sqrt 3 }},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{{{sec }^2}frac{x}{2}}}{{2cdotsqrt 3 }}, hfill \   = frac{2}{{sqrt 3 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{2arctan u}}{{sqrt 3 }} hfill \   = frac{{2arctan frac{{	an frac{x}{2}}}{{sqrt 3 }}}}{{sqrt 3 }} + C hfill \ end{gathered} ]

340.

[egin{gathered}  int {frac{x}{{1 + {x^4}}}} {kern 1pt} {	ext{d}}x hfill \  u = {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{1}{2}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{arctan u}}{2} hfill \   = frac{{arctan {x^2}}}{2} + C hfill \ end{gathered} ]

341.

frac{-1}{left(u - 1
ight) left(u + 1
ight)^{2}}=frac{A}{u + 1}+frac{B}{left(u + 1
ight)^{2}}+frac{C}{u - 1}

342.

[egin{gathered}  int {frac{x}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  u = 1 - {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 2x, hfill \   =  - frac{1}{2}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{1}{2} 	imes 2sqrt u  hfill \   =  - sqrt u  hfill \   =  - sqrt {1 - {x^2}}  + C hfill \ end{gathered} ]

343.

[egin{gathered}  int {{{left( {1 + {x^2}} 
ight)}^{ - frac{3}{2}}}} {kern 1pt} {	ext{d}}x = int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{{{left( {{{	an }^2}u + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{sec u}}{kern 1pt} {	ext{d}}u}  = int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = sin u = sin left( {arctan x} 
ight) = frac{x}{{sqrt {{x^2} + 1} }} hfill \   = frac{x}{{sqrt {{x^2} + 1} }} + C hfill \ end{gathered} ]

344.

[egin{gathered}  int {{{left( {t - sin t} 
ight)}^2}sin t{kern 1pt} {	ext{d}}t}  hfill \   = int {{{sin }^3}t{kern 1pt} {	ext{d}}t}  - 2int {t{{sin }^2}t{kern 1pt} {	ext{d}}t}  + int {{t^2}sin t{kern 1pt} {	ext{d}}t}  hfill \   = int {left( {1 - {{cos }^2}t} 
ight)sin t{	ext{d}}t}  - 2left[ {int {tleft( {frac{1}{2} - frac{{cos 2t}}{2}} 
ight){kern 1pt} {	ext{d}}t} } 
ight] + int {{t^2}sin t{	ext{d}}t}  hfill \  u = cos t,frac{{{	ext{d}}u}}{{{	ext{d}}t}} =  - sin t, hfill \   = frac{{{u^3}}}{3} - u - 2left[ { - frac{1}{2}int {tleft( {cos 2t - 1} 
ight){kern 1pt} {	ext{d}}t} } 
ight] + int {{t^2}sin t{kern 1pt} {	ext{d}}t}  hfill \   = frac{{{{cos }^3}t}}{3} - cos t + int {tcos 2t{kern 1pt} {	ext{d}}t}  - int {t{kern 1pt} {	ext{d}}t}  + int {{t^2}sin t{kern 1pt} {	ext{d}}t}  hfill \  u = {	ext{t}},v = cos 2t, hfill \  u = 1,v = frac{{sin 2t}}{2}, hfill \ end{gathered} ]

[egin{gathered}   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} - int {frac{{sin 2t}}{2}{kern 1pt} {	ext{d}}t}  - frac{{{t^2}}}{2} + int {{t^2}sin t{kern 1pt} {	ext{d}}t}  hfill \   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} + int {{t^2}sin t{	ext{d}}t}  hfill \  u = {t^2},v = sin t, hfill \  u = {	ext{2t}},v =  - cos t, hfill \   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} - int { - 2tcos t{	ext{d}}t}  - {t^2}cos t hfill \   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} + 2int {tcos t{kern 1pt} {	ext{d}}t}  - {t^2}cos t hfill \  u = {	ext{t,v}} = cos t, hfill \  u = 1,v = sin t, hfill \ end{gathered} ]

[egin{gathered}   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} + 2left( {tsin t - int {sin t{kern 1pt} {	ext{d}}t} } 
ight) - {t^2}cos t hfill \   = frac{{{{cos }^3}t}}{3} - cos t + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} + 2tsin t + 2cos t - {t^2}cos t hfill \   = frac{{{{cos }^3}t}}{3} + frac{{tsin 2t}}{2} + frac{{cos 2t}}{4} - frac{{{t^2}}}{2} + 2tsin t - {t^2}cos t + cos t + C hfill \ end{gathered} ]

345.

[egin{gathered}  int {frac{1}{{9 - {x^2}}}{kern 1pt} {	ext{d}}x}  =  - int {frac{1}{{{x^2} - 9}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{1}{{left( {x - 3} 
ight)left( {x + 3} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{left( {x - 3} 
ight)left( {x + 3} 
ight)}} = frac{A}{{x - 3}} + frac{B}{{x + 3}}, hfill \   = frac{1}{6}int {frac{1}{{x - 3}}{kern 1pt} {	ext{d}}x}  - frac{1}{6}int {frac{1}{{x + 3}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln left( {x - 3} 
ight)}}{6} - frac{{ln left( {x + 3} 
ight)}}{6} hfill \   = frac{{ln left| {x + 3} 
ight| - ln left| {x - 3} 
ight|}}{6} + C hfill \ end{gathered} ]

346.

[egin{gathered}  int {frac{{1 + sin x}}{{1 + cos x}}} {{	ext{e}}^x}{kern 1pt} {	ext{d}}x hfill \   = int {{{	ext{e}}^x}	an frac{x}{2}{kern 1pt} {	ext{d}}x}  + frac{1}{2}int {{{	ext{e}}^x}{{sec }^2}frac{x}{2}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x},v = {sec ^2}frac{x}{2}, hfill \  u = {{	ext{e}}^x},v = 2	an frac{x}{2}, hfill \   = int {{{	ext{e}}^x}	an frac{x}{2}{kern 1pt} {	ext{d}}x}  + frac{1}{2}left( {2{{	ext{e}}^x}	an frac{x}{2} - int {2{{	ext{e}}^x}	an frac{x}{2}{	ext{d}}x} } 
ight) hfill \   = int {{{	ext{e}}^x}	an frac{x}{2}{kern 1pt} {	ext{d}}x}  + {{	ext{e}}^x}	an frac{x}{2} - int {{{	ext{e}}^x}	an frac{x}{2}{	ext{d}}x}  hfill \   = {{	ext{e}}^x}	an frac{x}{2} + C hfill \ end{gathered} ]

347.

[egin{gathered}  int {frac{x}{{{{left( {1 + x} 
ight)}^2}}}} {{	ext{e}}^x}{kern 1pt} {	ext{d}}x hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = {{	ext{e}}^{ - 1}}int {frac{{left( {u - 1} 
ight){{	ext{e}}^u}}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = {{	ext{e}}^{ - 1}}left( {int {frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  - int {frac{{{{	ext{e}}^u}}}{{{u^2}}}{kern 1pt} {	ext{d}}u} } 
ight) hfill \  f = {{	ext{e}}^u},g = frac{1}{{{u^2}}}, hfill \  f = {{	ext{e}}^u},g =  - frac{1}{u}, hfill \   = {{	ext{e}}^{ - 1}}left( {int {frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  + int { - frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  + frac{{{{	ext{e}}^u}}}{u}} 
ight) hfill \   = frac{{{{	ext{e}}^{u - 1}}}}{u} hfill \   = frac{{{{	ext{e}}^x}}}{{x + 1}} + C hfill \ end{gathered} ]

348.

[egin{gathered}  int {left( {4x - 2} 
ight)cos 2x{kern 1pt} {	ext{d}}x}  hfill \   = 2int {left( {2x - 1} 
ight)cos 2x{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{2x}} - {	ext{1}},v = cos 2x, hfill \  u = 2,v = frac{{sin 2x}}{2}, hfill \   = 2left[ {frac{{left( {2x - 1} 
ight)sin 2x}}{2} - int {sin 2x{	ext{d}}x} } 
ight] hfill \   = left( {2x - 1} 
ight)sin 2x + cos 2x + C hfill \ end{gathered} ]

349.

[egin{gathered}  int {frac{{ln x}}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{x}, hfill \   = int {u{kern 1pt} {	ext{d}}u}  = frac{{{u^2}}}{2} hfill \   = frac{{{{ln }^2}x}}{2} + C hfill \  intlimits_1^9 {frac{{ln x}}{x}} {kern 1pt} {	ext{d}}x = frac{{{{ln }^2}9}}{2} hfill \ end{gathered} ]
推薦閱讀:

TAG:高等數學 | 高等數學大學課程 | 微積分 |