積分練習草稿4

積分練習草稿4

112.

[egin{gathered}  int {{{sec }^3}x{{	an }^5}x{kern 1pt} {	ext{d}}x}  hfill \  {	an ^2}x = {sec ^2}x - 1, hfill \   = int {{{sec }^2}x{{left( {{{sec }^2}x - 1} 
ight)}^2}cdotsec x	an x{	ext{d}}x}  hfill \  u = sec x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = sec x	an x, hfill \   = int {{u^2}{{left( {{u^2} - 1} 
ight)}^2}{kern 1pt} {	ext{d}}u}  hfill \   = int {{{left( {{u^2} - 1} 
ight)}^3}{kern 1pt} {	ext{d}}u}  + int {{{left( {{u^2} - 1} 
ight)}^2}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{u^7}}}{7} - frac{{2{u^5}}}{5} + frac{{{u^3}}}{3} hfill \   = frac{{{{sec }^7}x}}{7} - frac{{2{{sec }^5}x}}{5} + frac{{{{sec }^3}x}}{3} + C hfill \ end{gathered} ]

113.

[egin{gathered}  int {frac{{left( {x + 1} 
ight){{	ext{e}}^x}}}{{sqrt {{a^2} - {{	ext{e}}^x}} }}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {{	ext{e}}^x},x = ln u, hfill \   = int {frac{{ln u + 1}}{{sqrt {{a^2} - u} }}{kern 1pt} {	ext{d}}u}  hfill \  f = ln u + 1,g = frac{1}{{sqrt {{a^2} - u} }}, hfill \  f = frac{1}{u},g =  - 2sqrt {{a^2} - u} , hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) - int { - frac{{2sqrt {{a^2} - u} }}{u}{kern 1pt} {	ext{d}}u}  hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 2int {frac{{sqrt {{a^2} - u} }}{u}{kern 1pt} {	ext{d}}u}  hfill \  v = sqrt {{a^2} - u} ,frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - frac{1}{{2sqrt {{a^2} - u} }}, hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 2 	imes 2int {frac{{{v^2}}}{{{v^2} - {a^2}}}{kern 1pt} {	ext{d}}v}  hfill \ end{gathered} ]

[egin{gathered}  {v^2} = {v^2} - {a^2} + {a^2}, hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 4({a^2}int {frac{1}{{{v^2} - {a^2}}}{kern 1pt} {	ext{d}}v}  + int {1{kern 1pt} {	ext{d}}v} ) hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 4{a^2}(frac{1}{{2a}}int {frac{1}{{v - a}}{kern 1pt} {	ext{d}}v}  - frac{1}{{2a}}int {frac{1}{{v + a}}{kern 1pt} {	ext{d}}v} ) + 4v hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 2aint {frac{1}{{v - a}}{kern 1pt} {	ext{d}}v}  - 2aint {frac{1}{{v + a}}{kern 1pt} {	ext{d}}v}  + 4v hfill \   =  - 2sqrt {{a^2} - u} left( {ln u + 1} 
ight) + 2aln left( {v - a} 
ight) - 2aln left( {v + a} 
ight) + 4v hfill \  ...... hfill \ end{gathered} ]

114.

[egin{gathered}  int {frac{1}{{xsqrt {{x^2} - 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} - 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} - 1} }}, hfill \   = int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = arctan u hfill \   = arctan left( {sqrt {{x^2} - 1} } 
ight) + C hfill \  intlimits_{ - 2}^{ - 1} {frac{1}{{xsqrt {{x^2} - 1} }}} {kern 1pt} {	ext{d}}x =  - frac{pi }{3} hfill \ end{gathered} ]

115.

[egin{gathered}  int {frac{{ln x}}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,v = frac{1}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}, hfill \  u = frac{1}{x},v = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - int {frac{1}{{sqrt {{x^2} + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - int {frac{{{{sec }^2}u}}{{sqrt {{{	an }^2}u + 1} }}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - int {sec u{kern 1pt} {	ext{d}}u}  hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - int {frac{{sec u	an u + {{sec }^2}u}}{{	an u + sec u}}{kern 1pt} {	ext{d}}u}  hfill \  v = 	an u + sec u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = sec u	an u + {sec ^2}u, hfill \ end{gathered} ]

[egin{gathered}   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - int {frac{1}{v}{kern 1pt} {	ext{d}}v}  hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - ln v hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - ln left( {	an u + sec u} 
ight) hfill \  	an left( {arctan x} 
ight) = x,sec left( {arctan x} 
ight) = sqrt {{x^2} + 1} , hfill \   = frac{{xln x}}{{sqrt {{x^2} + 1} }} - ln left( {sqrt {{x^2} + 1}  + x} 
ight) + C hfill \ end{gathered} ]

116.

[egin{gathered}  int {{{left( {xarccos x} 
ight)}^2}} {kern 1pt} {	ext{d}}x{	ext{ = }}int {{x^2}{{arccos }^2}x{kern 1pt} {	ext{d}}x}  hfill \  u = arccos x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{sqrt {1 - {x^2}} }}, hfill \  {x^2} = {cos ^2}u,{arccos ^2}x = {u^2},{cos ^2}x = 1 - {sin ^2}x, hfill \  {sin ^2}x = 1 - {cos ^2}x, - {cos ^2}x =  - {cos ^2}x, hfill \   =  - int {{u^2}{{cos }^2}usin u{kern 1pt} {	ext{d}}u}  hfill \  f = {u^2},g = {cos ^2}usin u, hfill \  f = {	ext{2u}},g =  - frac{{{{cos }^3}u}}{3}, hfill \   =  - int {frac{{2u{{cos }^3}u}}{3}{kern 1pt} {	ext{d}}u}  + frac{{{u^2}{{cos }^3}u}}{3} hfill \   =  - frac{2}{3}int {u{{cos }^3}u{	ext{d}}u}  + frac{{{u^2}{{cos }^3}u}}{3} hfill \   =  - frac{2}{3} 	imes int {frac{{uleft( {cos 3u + 3cos u} 
ight)}}{4}{kern 1pt} {	ext{d}}u}  + frac{{{u^2}{{cos }^3}u}}{3} hfill \ end{gathered} ]

[egin{gathered}   =  - frac{1}{6}(int {ucos 3u{kern 1pt} {	ext{d}}u}  + 3int {ucos u{	ext{d}}u} ) + frac{{{u^2}{{cos }^3}u}}{3} hfill \  f = {	ext{u}},g = cos 3u, hfill \  f = 1,g = frac{{sin 3u}}{3}, hfill \   =  - frac{1}{6}(frac{{usin 3u}}{3} - int {frac{{sin 3u}}{3}{kern 1pt} {	ext{d}}u}  + 3int {ucos u{kern 1pt} {	ext{d}}u} ) + frac{{{u^2}{{cos }^3}u}}{3} hfill \   =  - frac{1}{6}(frac{{usin 3u}}{3} + frac{{cos 3u}}{9} + 3int {ucos u{kern 1pt} {	ext{d}}u} ) + frac{{{u^2}{{cos }^3}u}}{3} hfill \  f = {	ext{u}},g = cos u, hfill \  f = 1,g = sin u, hfill \   =  - frac{1}{6}(frac{{usin 3u}}{3} + frac{{cos 3u}}{9} + 3usin u - 3int {sin u{kern 1pt} {	ext{d}}u} ) + frac{{{u^2}{{cos }^3}u}}{3} hfill \ end{gathered} ]

[egin{gathered}   =  - frac{{usin 3u}}{{18}} - frac{{cos 3u}}{{54}} - frac{1}{2}usin u - frac{1}{2}cos u{kern 1pt}  + frac{{{u^2}{{cos }^3}u}}{3} hfill \  sin left( {arccos x} 
ight) = sqrt {1 - {x^2}} ,cos left( {arccos x} 
ight) = x, hfill \   =  - frac{{arccos xsin left( {3arccos x} 
ight)}}{{18}} - frac{{cos left( {3arccos x} 
ight)}}{{54}} + frac{{{x^3}{{arccos }^2}x}}{3} hfill \   - frac{{sqrt {1 - {x^2}} arccos x}}{2} - frac{x}{2} hfill \   =  - frac{{ - 9{x^3}{{arccos }^2}x + sqrt {1 - {x^2}} left( {6{x^2} + 12} 
ight)arccos x + 2{x^3} + 12x}}{{27}} + C hfill \   = frac{{9{x^3}{{arccos }^2}x + left( { - 6{x^2} - 12} 
ight)sqrt {1 - {x^2}} arccos x - 2{x^3} - 12x}}{{27}} + C hfill \ end{gathered} ]

117.

[egin{gathered}  int {frac{x}{{{{sin }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \  u = x,v = frac{1}{{{{sin }^2}x}}, hfill \  u = 1,v =  - cot x, hfill \   = int {cot x{kern 1pt} {	ext{d}}x}  - xcot x hfill \   = ln left| {sin x} 
ight| - xcot x + C hfill \ end{gathered} ]

118.

[egin{gathered}  int {frac{{x{{	ext{e}}^x}}}{{sqrt {{{	ext{e}}^x} - 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x} - 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {{	ext{e}}^x},x = ln left( {u + 1} 
ight), hfill \   = int {frac{{ln left( {u + 1} 
ight)}}{{sqrt u }}{kern 1pt} {	ext{d}}u}  hfill \  f = ln left( {u + 1} 
ight),g = frac{1}{{sqrt u }}, hfill \  f = frac{1}{{u + 1}},g = 2sqrt u , hfill \   = 2sqrt u ln left( {u + 1} 
ight) - int {frac{{2sqrt u }}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = sqrt u ,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{{2sqrt u }},u = {v^2}, hfill \   = 2sqrt u ln left( {u + 1} 
ight) - 4int {frac{{{v^2}}}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  hfill \  {v^2} = {v^2} + 1 - 1, hfill \   = 2sqrt u ln left( {u + 1} 
ight) - 4(int {1{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v} ) hfill \ end{gathered} ]

[egin{gathered}   = 2sqrt u ln left( {u + 1} 
ight) - 4v + 4arctan v hfill \   = 4arctan sqrt {{{	ext{e}}^x} - 1}  + 2xsqrt {{{	ext{e}}^x} - 1}  - 4sqrt {{{	ext{e}}^x} - 1}  + C hfill \   = 2left( {2arctan sqrt {{{	ext{e}}^x} - 1}  + left( {x - 2} 
ight)sqrt {{{	ext{e}}^x} - 1} } 
ight) + C hfill \ end{gathered} ]

119.

[egin{gathered}  int {frac{{{{sin }^2}x}}{{{{cos }^3}x}}{kern 1pt} {	ext{d}}x}  = int {sec x{{	an }^2}x{kern 1pt} {	ext{d}}x}  hfill \   = int {{{sec }^3}x{kern 1pt} {	ext{d}}x}  - int {sec x{	ext{d}}x}  hfill \   = frac{1}{2}smallint sec x{kern 1pt} {	ext{d}}x + frac{{sec x	an x}}{2} - int {sec x{kern 1pt} {	ext{d}}x}  hfill \  {	ext{ = }}frac{{sec x	an x}}{2} - frac{1}{2}int {sec x{kern 1pt} {	ext{d}}x}  hfill \   = frac{{sec x	an x}}{2} - frac{{ln left| {	an x + sec x} 
ight|}}{2} + C hfill \ end{gathered} ]

120.

[egin{gathered}  int {frac{1}{{sqrt x  - 3sqrt[3]{x}}}{kern 1pt} {	ext{d}}x}  = int {frac{1}{{6{x^{frac{5}{6}}}}}cdotfrac{{6sqrt x }}{{(sqrt[6]{x} - 3)}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt[6]{x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{6{x^{frac{5}{6}}}}},sqrt[3]{x} = {u^2},sqrt x  = {u^3} hfill \  {x^{frac{5}{6}}} = {u^5}, hfill \   = 6int {frac{{{u^3}}}{{u - 3}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} - {	ext{3}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 1,{u^3} = {left( {v + 3} 
ight)^3}, hfill \   = 6int {frac{{{{left( {v + 3} 
ight)}^3}}}{v}{kern 1pt} {	ext{d}}v}  hfill \   = 6(int {{v^2}{kern 1pt} {	ext{d}}v}  + 9int {v{kern 1pt} {	ext{d}}v}  + 27int {frac{1}{v}{kern 1pt} {	ext{d}}v}  + 27int {1{kern 1pt} {	ext{d}}v} ) hfill \   = 6(27ln v + frac{{{v^3}}}{3} + frac{{9{v^2}}}{2} + 27v) hfill \ end{gathered} ]

[egin{gathered}   = 6left[ {27left( {u - 3} 
ight) + frac{{{{left( {u - 3} 
ight)}^3}}}{3} + frac{{9{{left( {u - 3} 
ight)}^2}}}{2} + 27ln left( {u - 3} 
ight)} 
ight] hfill \   = 2sqrt x  + 9sqrt[3]{x} + 54sqrt[6]{x} + 162ln left| {sqrt[6]{x} - 3} 
ight| + C hfill \ end{gathered} ]

121.

[egin{gathered}  int {frac{{arcsin {{	ext{e}}^x}}}{{{{	ext{e}}^x}}}} {kern 1pt} {	ext{d}}x = int {{{	ext{e}}^{ - x}}arcsin {{	ext{e}}^x}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} =  - {	ext{x}}, hfill \   =  - int {{{	ext{e}}^u}operatorname{arccsc} {{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  hfill \  v = {{	ext{e}}^u},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {{	ext{e}}^u}, hfill \   =  - int {operatorname{arc} csc v{kern 1pt} {	ext{d}}v}  hfill \  f = operatorname{arc} csc v,g = 1, hfill \  f =  - frac{1}{{vsqrt {{v^2} - 1} }},g = v, hfill \   =  - voperatorname{arc} csc v - int {frac{1}{{sqrt {{v^2} - 1} }}{kern 1pt} {	ext{d}}v}  hfill \  v = sec u,u = operatorname{arc} sec v,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = sec u	an u, hfill \   =  - voperatorname{arc} csc v - int {frac{{sec u	an u}}{{sqrt {{{sec }^2}u - 1} }}{kern 1pt} {	ext{d}}u}  hfill \ end{gathered} ]

[egin{gathered}   =  - voperatorname{arc} csc v - int {sec u{kern 1pt} {	ext{d}}u}  hfill \   =  - voperatorname{arc} csc v - int {frac{{sec u	an u + {{sec }^2}u}}{{	an u + sec u}}{kern 1pt} {	ext{d}}u}  hfill \  w = 	an u + sec u,frac{{{	ext{d}}w}}{{{	ext{d}}u}} = sec u	an u + {sec ^2}u, hfill \   =  - voperatorname{arc} csc v - int {frac{1}{w}{kern 1pt} {	ext{d}}w}  hfill \   = voperatorname{arc} csc v + ln left( {	an u + sec u} 
ight) hfill \  	an left( {operatorname{arc} sec v} 
ight) = sqrt {{v^2} - 1} ,sec left( {operatorname{arc} sec v} 
ight) = v, hfill \   =  - voperatorname{arc} csc v - ln left( {sqrt {{v^2} - 1}  + v} 
ight) hfill \ end{gathered} ]

[egin{gathered}   =  - ln left( {sqrt {{{	ext{e}}^{2u}} - 1}  + {{	ext{e}}^u}} 
ight) - {{	ext{e}}^u}operatorname{arccsc} {{	ext{e}}^u} hfill \   =  - {{	ext{e}}^{ - x}}arcsin {{	ext{e}}^x} - ln left( {{{	ext{e}}^{ - x}} + sqrt {{{	ext{e}}^{ - 2x}} - 1} } 
ight) + C hfill \ end{gathered} ]

122.

[egin{gathered}  int {frac{1}{{sqrt 2  + cos t}}} {kern 1pt} {	ext{d}}t hfill \   = int {frac{{{{sec }^2}frac{t}{2}}}{{sqrt 2 {{	an }^2}frac{t}{2} - {{	an }^2}frac{t}{2} + sqrt 2  + 1}}{kern 1pt} {	ext{d}}t}  hfill \  u = frac{{sqrt {sqrt 2  - 1} 	an frac{t}{2}}}{{sqrt {sqrt 2  + 1} }},frac{{{	ext{d}}u}}{{{	ext{d}}t}} = frac{{sqrt {sqrt 2  - 1} {{sec }^2}frac{t}{2}}}{{2sqrt {sqrt 2  + 1} }}, hfill \   = frac{2}{{sqrt {sqrt 2  - 1} sqrt {sqrt 2  + 1} }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{2arctan u}}{{sqrt {sqrt 2  - 1} sqrt {sqrt 2  + 1} }} hfill \   = frac{{2arctan frac{{sqrt {sqrt 2  - 1} 	an frac{t}{2}}}{{sqrt {sqrt 2  + 1} }}}}{{sqrt {sqrt 2  - 1} sqrt {sqrt 2  + 1} }} + C hfill \   = 2arctan frac{{left( {2sqrt 2  - 2} 
ight)sin t}}{{2left( {cos t + 1} 
ight)}} + C hfill \ end{gathered} ]

123.

[egin{gathered}  int {frac{1}{{{{left( {{x^2} + x + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  = int {frac{1}{{{{left[ {{{left( {x + frac{1}{2}} 
ight)}^2} + frac{3}{4}} 
ight]}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = 16int {frac{1}{{{{left[ {{{left( {2x + 1} 
ight)}^2} + 3} 
ight]}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{2x}} + {	ext{1}}, hfill \   = 16 	imes frac{1}{2}int {frac{1}{{{{left( {{u^2} + 3} 
ight)}^2}}}{kern 1pt} {	ext{d}}u}  = 8int {frac{1}{{{{left( {{u^2} + 3} 
ight)}^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = 8left[ {frac{1}{6}int {frac{1}{{{u^2} + 3}}{kern 1pt} {	ext{d}}u}  + frac{u}{{6left( {{u^2} + 3} 
ight)}}} 
ight] hfill \  v = frac{u}{{sqrt 3 }},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{{sqrt 3 }}, hfill \ end{gathered} ]

[egin{gathered}   = 8left[ {frac{1}{{sqrt 3 }}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  + frac{u}{{6left( {{u^2} + 3} 
ight)}}} 
ight] hfill \   = 8left[ {frac{{arctan v}}{{sqrt 3 }} + frac{u}{{6left( {{u^2} + 3} 
ight)}}} 
ight] hfill \   = 8left[ {frac{{arctan frac{u}{{sqrt 3 }}}}{{sqrt 3 }} + frac{u}{{6left( {{u^2} + 3} 
ight)}}} 
ight] hfill \   = frac{{4arctan frac{{2x + 1}}{{sqrt 3 }}}}{{3sqrt 3 }} + frac{{2x + 1}}{{3{x^2} + 3x + 3}} + C hfill \ end{gathered} ]

124.

[egin{gathered}  int {left( {x + 1} 
ight)sqrt {{x^2} - 2x - 1} {kern 1pt} {	ext{d}}x}  hfill \  {	ext{x}} + {	ext{1}} = frac{1}{2}(2x - 2) + 2, hfill \   = int {left[ {frac{{left( {2x - 2} 
ight)sqrt {{x^2} - 2x - 1} }}{2} + 2sqrt {{x^2} - 2x - 1} } 
ight]{kern 1pt} {	ext{d}}x}  hfill \   = int {left( {x - 1} 
ight)sqrt {{x^2} - 2x - 1} {kern 1pt} {	ext{d}}x}  + 2smallint sqrt {{x^2} - 2x - 1} {kern 1pt} {	ext{d}}x hfill \  u = {x^2} - 2x - 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x - 2, hfill \   = frac{1}{2}int {sqrt u {kern 1pt} {	ext{d}}u}  + 2int {sqrt {{{left( {x - 1} 
ight)}^2} - 2} {kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2} 	imes frac{{2{u^{frac{3}{2}}}}}{3} + 2int {sqrt {{{left( {x - 1} 
ight)}^2} - 2} {kern 1pt} {	ext{d}}x}  hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 2int {sqrt {{{left( {x - 1} 
ight)}^2} - 2} {kern 1pt} {	ext{d}}x}  hfill \ end{gathered} ]

[egin{gathered}  {	ext{u}} = {	ext{x}} - {	ext{1}}, hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 2int {sqrt {{u^2} - 2} {kern 1pt} {	ext{d}}u}  hfill \  u = sqrt 2 sec v,v = operatorname{arcsec} frac{u}{{sqrt 2 }},frac{{{	ext{d}}u}}{{{	ext{d}}v}} = sqrt 2 sec v	an v, hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 2int {sqrt 2 sec vsqrt {2{{sec }^2}v - 2} 	an v{kern 1pt} {	ext{d}}v}  hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 4int {sec v{{	an }^2}v{kern 1pt} {	ext{d}}v}  hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 4(int {{{sec }^3}v{kern 1pt} {	ext{d}}v}  - int {sec v{kern 1pt} {	ext{d}}v} ) hfill \ end{gathered} ]

[egin{gathered}   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 4(frac{1}{2}int {sec v{kern 1pt} {	ext{d}}v}  + frac{{sec v	an v}}{2} - int {sec v{kern 1pt} {	ext{d}}v} ) hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 2sec v	an v - 2int {sec v{kern 1pt} {	ext{d}}v}  hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + 2sec v	an v - 2ln left( {	an v + sec v} 
ight) hfill \  v = operatorname{arcsec} frac{u}{{sqrt 2 }},	an left( {operatorname{arcsec} frac{u}{{sqrt 2 }}} 
ight) = sqrt {frac{{{u^2}}}{2} - 1} ,sec left( {operatorname{arcsec} frac{u}{{sqrt 2 }}} 
ight) = frac{u}{{sqrt 2 }}, hfill \   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + frac{{2usqrt {frac{{{u^2}}}{2} - 1} }}{{sqrt 2 }} - 2ln left( {sqrt {frac{{{u^2}}}{2} - 1}  + frac{u}{{sqrt 2 }}} 
ight) hfill \ end{gathered} ]

[egin{gathered}   = frac{{{{left( {{x^2} - 2x - 1} 
ight)}^{frac{3}{2}}}}}{3} + frac{{2sqrt {frac{{{{left( {x - 1} 
ight)}^2}}}{2} - 1} left( {x - 1} 
ight)}}{{sqrt 2 }} - 2ln left( {frac{{x - 1}}{{sqrt 2 }} + sqrt {frac{{{{left( {x - 1} 
ight)}^2}}}{2} - 1} } 
ight) hfill \   = frac{{sqrt {{x^2} - 2x - 1} left( {{x^2} + x - 4} 
ight) - 6ln left| {sqrt {{x^2} - 2x - 1}  + x - 1} 
ight|}}{3} + C hfill \ end{gathered} ]

125.

[egin{gathered}  int {frac{1}{{1 + {{cos }^2}x}}} {kern 1pt} {	ext{d}}x = int {{{sec }^2}xcdotfrac{1}{{{{	an }^2}x + 2}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{{{u^2} + 2}}{kern 1pt} {	ext{d}}u}  hfill \  v = frac{u}{{sqrt 2 }},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{{sqrt 2 }}, hfill \   = frac{1}{{sqrt 2 }}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  hfill \   = frac{{arctan v}}{{sqrt 2 }} hfill \   = frac{{arctan frac{{	an x}}{{sqrt 2 }}}}{{sqrt 2 }} + C hfill \ end{gathered} ]

126.

[egin{gathered}  int {{{left( {sqrt {{a^2} - {x^2}}  + x} 
ight)}^2}{kern 1pt} {	ext{d}}x}  hfill \   = 2int {xsqrt {{a^2} - {x^2}} {kern 1pt} {	ext{d}}x}  + {a^2}int {1{kern 1pt} {	ext{d}}x}  hfill \  u = {a^2} - {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 2x, hfill \   =  - frac{1}{2}int {sqrt u {kern 1pt} {	ext{d}}u}  + {a^2}x hfill \   = {a^2}x - frac{{2{{left( {{a^2} - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} + C hfill \  intlimits_{ - a}^a {{{left( {x + sqrt {{a^2} - {x^2}} } 
ight)}^2}} {kern 1pt} {	ext{d}}x = 2{a^3} hfill \ end{gathered} ]

127.

[egin{gathered}  int {{{sin }^4}t{kern 1pt} {	ext{d}}t}  hfill \   = int {frac{{cos 4t - 4cos 2t + 3}}{8}{kern 1pt} {	ext{d}}t}  hfill \   = frac{1}{8}int {cos 4t{kern 1pt} {	ext{d}}t}  - frac{1}{2}int {cos 2t{kern 1pt} {	ext{d}}t}  + frac{3}{8}int {1{kern 1pt} {	ext{d}}t}  hfill \   = frac{{sin 4t}}{{32}} - frac{{sin 2t}}{4} + frac{{3t}}{8} + C hfill \   = frac{{sin 4t - 8sin 2t + 12t}}{{32}} + C hfill \ end{gathered} ]

128.

[egin{gathered}  int {{{sin }^6}t{kern 1pt} {	ext{d}}t}  hfill \   = int {frac{{ - cos 6t + 6cos 4t - 15cos 2t + 10}}{{32}}{kern 1pt} {	ext{d}}t}  hfill \   =  - frac{1}{{32}}int {cos 6t{kern 1pt} {	ext{d}}t}  + frac{3}{{16}}int {cos 4t{kern 1pt} {	ext{d}}t}  - frac{{15}}{{32}}int {cos 2t{kern 1pt} {	ext{d}}t}  + frac{5}{{16}}int {1{kern 1pt} {	ext{d}}t}  hfill \   =  - frac{{sin 6t}}{{192}} + frac{{3sin 4t}}{{64}} - frac{{15sin 2t}}{{64}} + frac{{5t}}{{16}} + C hfill \   =  - frac{{sin 6t - 9sin 4t + 45sin 2t - 60t}}{{192}} + C hfill \ end{gathered} ]

129.

[egin{gathered}  int {arctan sqrt x {kern 1pt} {	ext{d}}x}  hfill \  u = arctan sqrt x ,v = 1, hfill \  u = frac{1}{{2sqrt x left( {x + 1} 
ight)}},v = x, hfill \   = xarctan sqrt x  - int {frac{{sqrt x }}{{2left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},x = {u^2}, hfill \   = xarctan sqrt x  - frac{1}{2} 	imes 2int {frac{{{u^2}}}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = xarctan sqrt x  - (int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u} ) hfill \   = xarctan sqrt x  - (u - arctan u) hfill \   = xarctan sqrt x  - sqrt x  + arctan sqrt x  + C hfill \   =  - sqrt x  + left( {x + 1} 
ight)arctan sqrt x  + C hfill \  intlimits_1^3 {arctan } sqrt x {kern 1pt} {	ext{d}}x = frac{{4pi  - 3sqrt 3 }}{3} - frac{{pi  - 2}}{2} hfill \ end{gathered} ]

130.

[egin{gathered}  int {frac{{{{cos }^2}t}}{{{{sin }^3}t}}{kern 1pt} {	ext{d}}t}  = int {{{cot }^2}tcsc t{kern 1pt} {	ext{d}}t}  hfill \   = int {{{csc }^3}t{kern 1pt} {	ext{d}}t}  - int {csc t{kern 1pt} {	ext{d}}t}  hfill \   = frac{1}{2}int {csc t{kern 1pt} {	ext{d}}t}  - frac{{cot tcsc t}}{2} - int {csc t{kern 1pt} {	ext{d}}t}  hfill \   =  - frac{1}{2}int {csc t{kern 1pt} {	ext{d}}t}  - frac{{cot tcsc t}}{2} hfill \   =  - frac{1}{2}( - ln left( {csc t + cot t} 
ight)) - frac{{cot tcsc t}}{2} hfill \   = frac{{ln left| {csc t + cot t} 
ight|}}{2} - frac{{cot tcsc t}}{2} + C hfill \ end{gathered} ]

131.

[egin{gathered}  int {left( {{{sin }^4}x + {{cos }^4}x} 
ight){kern 1pt} {	ext{d}}x}  hfill \   = int {{{sin }^4}x{kern 1pt} {	ext{d}}x}  + int {{{cos }^4}x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{cos 4x - 4cos 2x + 3}}{8}{kern 1pt} {	ext{d}}x}  + int {frac{{cos 4x + 4cos 2x + 3}}{8}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{sin 4x}}{{32}} - frac{{sin 2x}}{4} + frac{{3x}}{8} + frac{{sin 4x}}{{32}} + frac{{sin 2x}}{4} + frac{{3x}}{8} hfill \   = frac{{sin 4x}}{{16}} + frac{{3x}}{4} + C hfill \ end{gathered} ]

132.

[egin{gathered}  int {frac{{{x^2}}}{{{{left( {xsin x + cos x} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{xsin x}}{{xsin x + cos x}}{kern 1pt} {	ext{d}}x}  - int {frac{{xcos xleft( {sin x - xcos x} 
ight)}}{{{{left( {xsin x + cos x} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sin x - xcos x,v = frac{{xcos x}}{{{{left( {xsin x + cos x} 
ight)}^2}}}, hfill \  u = xsin x,v =  - frac{1}{{xsin x + cos x}}, hfill \   = int {frac{{xsin x}}{{xsin x + cos x}}{kern 1pt} {	ext{d}}x}  + int { - frac{{xsin x}}{{xsin x + cos x}}{kern 1pt} {	ext{d}}x}  + frac{{sin x - xcos x}}{{xsin x + cos x}} hfill \   = frac{{sin x - xcos x}}{{xsin x + cos x}} + C hfill \ end{gathered} ]

133.

[egin{gathered}  int {left( {{x^2} + cos x} 
ight)} sin x{kern 1pt} {	ext{d}}x hfill \   = int {cos xsin x{kern 1pt} {	ext{d}}x}  + int {{x^2}sin x{kern 1pt} {	ext{d}}x}  hfill \  u = sin x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = cos x, hfill \   = int {u{kern 1pt} {	ext{d}}u}  + int {{x^2}sin x{kern 1pt} {	ext{d}}x}  hfill \   = frac{{{u^2}}}{2} + int {{x^2}sin x{kern 1pt} {	ext{d}}x}  hfill \  f = {x^2},v = sin x, hfill \  f = {	ext{2x}},v =  - cos x, hfill \   = frac{{{{sin }^2}x}}{2} - int { - 2xcos x{kern 1pt} {	ext{d}}x}  - {x^2}cos x hfill \  u = {	ext{x}},v = cos x, hfill \  u = 1,v = sin x, hfill \   = frac{{{{sin }^2}x}}{2} + 2(xsin x - int {sin x{kern 1pt} {	ext{d}}x} ) - {x^2}cos x hfill \   = frac{{{{sin }^2}x}}{2} + 2xsin x + 2cos x - {x^2}cos x + C hfill \   = 2xsin x - frac{{{{cos }^2}x}}{2} + left( {2 - {x^2}} 
ight)cos x + C hfill \ end{gathered} ]

[intlimits_{ - frac{pi }{2}}^{frac{pi }{2}} {left( {{x^2} + cos x} 
ight)} sin x{kern 1pt} {	ext{d}}x = 0]

134.

[egin{gathered}  int {sqrt {frac{{{{	ext{e}}^x} - 1}}{{{{	ext{e}}^x} + 1}}} {kern 1pt} {	ext{d}}x}  = int {frac{{sqrt {{{	ext{e}}^x} - 1} }}{{sqrt {{{	ext{e}}^x} + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{{{	ext{e}}^x} + 1}}{{{{	ext{e}}^x} - 1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{{{	ext{e}}^x}}}{{{{	ext{e}}^x} - 1}} - frac{{{{	ext{e}}^x}left( {{{	ext{e}}^x} + 1} 
ight)}}{{{{left( {{{	ext{e}}^x} - 1} 
ight)}^2}}}, hfill \  {{	ext{e}}^x} = frac{2}{{u - 1}} + 1, hfill \   =  - 2int {frac{1}{{sqrt u left( {{u^2} - 1} 
ight)}}{kern 1pt} {	ext{d}}u}  hfill \  v = sqrt u ,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{{2sqrt u }},{u^2} = {v^4}, hfill \   =  - 2 	imes 2int {frac{1}{{{v^4} - 1}}{kern 1pt} {	ext{d}}v}  hfill \   =  - 4int {frac{1}{{left( {v - 1} 
ight)left( {v + 1} 
ight)left( {{v^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}v}  hfill \ end{gathered} ]

[egin{gathered}  frac{1}{{left( {v - 1} 
ight)left( {v + 1} 
ight)left( {{v^2} + 1} 
ight)}} = frac{A}{{v + 1}} + frac{{Bv + C}}{{{v^2} + 1}} + frac{D}{{v - 1}}, hfill \   =  - 4( - frac{1}{2}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  - frac{1}{4}int {frac{1}{{v + 1}}{kern 1pt} {	ext{d}}v}  + frac{1}{4}int {frac{1}{{v - 1}}{kern 1pt} {	ext{d}}v} ) hfill \   =  - 4left[ { - frac{{ln left( {v + 1} 
ight)}}{4} - frac{{arctan v}}{2} + frac{{ln left( {v - 1} 
ight)}}{4}} 
ight] hfill \   = ln left( {sqrt u  + 1} 
ight) + 2arctan sqrt u  - ln left( {sqrt u  - 1} 
ight) hfill \   =  - ln left| {frac{{sqrt {{{	ext{e}}^x} + 1} }}{{sqrt {{{	ext{e}}^x} - 1} }} - 1} 
ight| + ln left( {frac{{sqrt {{{	ext{e}}^x} + 1} }}{{sqrt {{{	ext{e}}^x} - 1} }} + 1} 
ight) + 2arctan frac{{sqrt {{{	ext{e}}^x} + 1} }}{{sqrt {{{	ext{e}}^x} - 1} }} + C hfill \ end{gathered} ]

[ = ln left( {sqrt {{{	ext{e}}^{2x}} - 1}  + {{	ext{e}}^x}} 
ight) + arcsin {{	ext{e}}^{ - x}} + C]

135.

[egin{gathered}  int {frac{x}{{left( {2 - {x^2}} 
ight)sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x =  - int {frac{x}{{sqrt {1 - {x^2}} left( {{x^2} - 2} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {1 - {x^2}} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{x}{{sqrt {1 - {x^2}} }}, hfill \   =  - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = arctan u hfill \   =  - arctan sqrt {1 - {x^2}}  + C hfill \  intlimits_0^1 {frac{x}{{left( {2 - {x^2}} 
ight)sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x = frac{pi }{4} hfill \ end{gathered} ]

136.

[egin{gathered}  int {frac{1}{{1 - {x^2}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{1}{{{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{1}{{left( {x - 1} 
ight)left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{left( {x - 1} 
ight)left( {x + 1} 
ight)}} = frac{A}{{x + 1}} + frac{B}{{x - 1}}, hfill \   =  - (frac{1}{2}int {frac{1}{{x - 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {frac{1}{{x + 1}}{kern 1pt} {	ext{d}}x} ) hfill \   = frac{{ln left| {x + 1} 
ight|}}{2} - frac{{ln left| {x - 1} 
ight|}}{2} + C hfill \ end{gathered} ]

137.

[egin{gathered}  int {{{sec }^3}xdx}  hfill \  operatorname{u}  = sec x,operatorname{dv}  = {sec ^2}xdx, hfill \  operatorname{du}  = 	an xsec xdx,operatorname{v}  = int {{{sec }^2}xdx}  = 	an x, hfill \  int {{{sec }^3}xdx}  = 	an xsec x - int {{{	an }^2}xsec xdx}  hfill \   = 	an xsec x - int {{{sec }^3}xdx}  + int {sec xdx}  hfill \   Rightarrow int {{{sec }^3}xdx}  = frac{1}{2}	an xsec x + frac{1}{2}int {sec xdx}  hfill \ end{gathered} ]

138.

[egin{gathered}  int {frac{{{x^2}}}{{x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 1,{x^2} = {left( {u - 1} 
ight)^2}, hfill \   = int {frac{{{{left( {u - 1} 
ight)}^2}}}{u}{kern 1pt} {	ext{d}}u}  hfill \   = int {u{kern 1pt} {	ext{d}}u}  + int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - 2int {1{kern 1pt} {	ext{d}}u}  hfill \   = ln u + frac{{{u^2}}}{2} - 2u hfill \   = ln left| {x + 1} 
ight| + frac{{{{left( {x + 1} 
ight)}^2}}}{2} - 2left( {x + 1} 
ight) + C hfill \   = ln left| {x + 1} 
ight| + frac{{left( {x - 2} 
ight)x}}{2} + C hfill \ end{gathered} ]

139.

[egin{gathered}  int {frac{{arcsin sqrt x }}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {arcsin u{kern 1pt} {	ext{d}}u}  hfill \  f = arcsin u,g = 1, hfill \  f = frac{1}{{sqrt {1 - {u^2}} }},g = u, hfill \   = 2uarcsin u - 2int {frac{u}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u}  hfill \  v = 1 - {u^2},frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - 2u, hfill \   = 2uarcsin u + int {frac{1}{{sqrt v }}{kern 1pt} {	ext{d}}v}  hfill \   = 2uarcsin u + 2sqrt v  hfill \   = 2uarcsin u + 2sqrt {1 - {u^2}}  hfill \   = 2sqrt x arcsin sqrt x  + 2sqrt {1 - x}  + C hfill \   = 2left( {sqrt x arcsin sqrt x  + sqrt {1 - x} } 
ight) + C hfill \ end{gathered} ]

140.

[egin{gathered}  int {frac{{{{left( {sqrt x } 
ight)}^3} + 1}}{{sqrt x  + 1}}} {kern 1pt} {	ext{d}}x = int {frac{{{x^{frac{3}{2}}} + 1}}{{sqrt x  + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},{x^{frac{3}{2}}} = {u^3}, hfill \   = 2int {uleft( {{u^2} - u + 1} 
ight){kern 1pt} {	ext{d}}u}  hfill \   = 2(int {{u^3}{kern 1pt} {	ext{d}}u}  - int {{u^2}{kern 1pt} {	ext{d}}u}  + int {u{kern 1pt} {	ext{d}}u} ) hfill \   = frac{{{u^4}}}{2} - frac{{2{u^3}}}{3} + {u^2} hfill \   = frac{{{x^2}}}{2} - frac{{2xsqrt x }}{3} + x + C hfill \ end{gathered} ]

141.

[egin{gathered}  int {frac{{sqrt {x + 1}  - 1}}{{sqrt {x + 1}  + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 1, hfill \   = int {frac{{sqrt u  - 1}}{{sqrt u  + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = int {1{kern 1pt} {	ext{d}}u}  - 2int {frac{1}{{sqrt u  + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = frac{1}{{sqrt u  + 1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - frac{1}{{2{{left( {sqrt u  + 1} 
ight)}^2}sqrt u }},sqrt u  = frac{1}{v} - 1, hfill \   = u - 4int {frac{{v - 1}}{{{v^2}}}{kern 1pt} {	ext{d}}v}  hfill \   = u - 4(int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2}}}{kern 1pt} {	ext{d}}v} ) hfill \   = u - 4ln v - 4frac{1}{v} hfill \  ln frac{1}{{sqrt u  + 1}} =  - ln left( {sqrt u  + 1} 
ight), hfill \   = u - 4left( {sqrt u  + 1} 
ight) + 4ln left( {sqrt u  + 1} 
ight) hfill \ end{gathered} ]

[egin{gathered}   = 4ln left( {sqrt {x + 1}  + 1} 
ight) - 4left( {sqrt {x + 1}  + 1} 
ight) + x + 1 + C hfill \   = 4ln left( {sqrt {x + 1}  + 1} 
ight) - 4sqrt {x + 1}  + x + C hfill \ end{gathered} ]

142.

[egin{gathered}  int {frac{1}{{sqrt x  + sqrt[4]{x}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt[4]{x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{4{x^{frac{3}{4}}}}}, hfill \  sqrt x  = {u^2},{x^{frac{3}{4}}} = {u^3}, hfill \   = 4int {frac{{{u^2}}}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} + {	ext{1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 1,{u^2} = {left( {v - 1} 
ight)^2}, hfill \   = 4int {frac{{{{left( {v - 1} 
ight)}^2}}}{v}{kern 1pt} {	ext{d}}v}  hfill \   = 4(int {v{kern 1pt} {	ext{d}}v}  + int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - 2int {1{kern 1pt} {	ext{d}}v} ) hfill \   = 4(ln v + frac{{{v^2}}}{2} - 2v) hfill \ end{gathered} ]

[egin{gathered}   = 4left[ {ln left( {u + 1} 
ight) + frac{{{{left( {u + 1} 
ight)}^2}}}{2} - 2left( {u + 1} 
ight)} 
ight] hfill \   =  - 8left( {sqrt[4]{x} + 1} 
ight) + 2{left( {sqrt[4]{x} + 1} 
ight)^2} + 4ln left( {sqrt[4]{x} + 1} 
ight) + C hfill \   = 2sqrt x  - 4sqrt[4]{x} + 4ln left( {sqrt[4]{x} + 1} 
ight) + C hfill \ end{gathered} ]

143.

[egin{gathered}  int {frac{1}{{3 + {{sin }^2}v}}} {kern 1pt} {	ext{d}}x hfill \  sin v = frac{{	an v}}{{sec v}},{sec ^2}v = {	an ^2}v + 1, hfill \   = int {{{sec }^2}vcdotfrac{1}{{4{{	an }^2}v + 3}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an v,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}v, hfill \   = int {frac{1}{{4{u^2} + 3}}{kern 1pt} {	ext{d}}u}  hfill \  v = frac{{2u}}{{sqrt 3 }},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{2}{{sqrt 3 }}, hfill \   = frac{1}{{2sqrt 3 }}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  hfill \   = frac{{arctan v}}{{2sqrt 3 }} hfill \   = frac{{arctan frac{{2	an x}}{{sqrt 3 }}}}{{2sqrt 3 }} + C hfill \ end{gathered} ]

144.

[egin{gathered}  int {frac{{{x^3} + 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  frac{{{x^3} + 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}} = frac{{Ax + B}}{{{x^2} + 1}} + frac{{Cx + D}}{{{{left( {{x^2} + 1} 
ight)}^2}}}, hfill \   = int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{{x - 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{x}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  + int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \ end{gathered} ]

[egin{gathered}   = frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - frac{1}{2}int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  + frac{x}{{2left( {{x^2} + 1} 
ight)}} hfill \   = frac{{ln left( {{x^2} + 1} 
ight)}}{2} + frac{1}{{2left( {{x^2} + 1} 
ight)}} + frac{{arctan x}}{2} + frac{x}{{2left( {{x^2} + 1} 
ight)}} + C hfill \   = frac{{ln left( {{x^2} + 1} 
ight)}}{2} + frac{{arctan x}}{2} + frac{{x + 1}}{{2{x^2} + 2}} + C hfill \ end{gathered} ]

145.

[egin{gathered}  int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}dx}  = ? hfill \  # #  hfill \  int {frac{1}{{{x^2} + 1}}dx}  hfill \  operatorname{u}  = frac{1}{{{x^2} + 1}},operatorname{dv}  = dx,operatorname{du}  =  - frac{{2x}}{{{{left( {{x^2} + 1} 
ight)}^2}}}dx,v = x, hfill \   = frac{x}{{{x^2} + 1}} - int { - frac{{2{x^2}}}{{{{left( {{x^2} + 1} 
ight)}^2}}}dx}  hfill \   = frac{x}{{{x^2} + 1}} + 2int {left[ { - frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}} + frac{{{x^2} + 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}}} 
ight]dx}  hfill \   = frac{x}{{{x^2} + 1}} - 2int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}dx}  + 2int {frac{1}{{{x^2} + 1}}dx}  hfill \   Rightarrow int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}dx}  = frac{x}{{2left( {{x^2} + 1} 
ight)}} + frac{1}{2}int {frac{1}{{{x^2} + 1}}dx}  hfill \ end{gathered} ]

146.

[egin{gathered}  int {frac{1}{{sqrt {{{left( {{x^2} + 1} 
ight)}^3}} }}} {kern 1pt} {	ext{d}}x = int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  x = 	an u,u = arctan x, hfill \  frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{{{left( {{{	an }^2}u + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{sec u}}{kern 1pt} {	ext{d}}u}  = int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = sin u hfill \  sin left( {arctan x} 
ight) = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = frac{x}{{sqrt {{x^2} + 1} }} + C hfill \ end{gathered} ]

147.

[egin{gathered}  int {left( {x - sqrt {4 - {x^2}} } 
ight){kern 1pt} {	ext{d}}x}  hfill \   = int {x{kern 1pt} {	ext{d}}x}  - int {sqrt {4 - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  x = 2sin u,u = arcsin frac{x}{2},frac{{{	ext{d}}x}}{{{	ext{d}}u}} = 2cos u, hfill \   = frac{{{x^2}}}{2} - int {2cos usqrt {4 - 4{{sin }^2}u} {kern 1pt} {	ext{d}}u}  hfill \   = frac{{{x^2}}}{2} - 4int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{x^2}}}{2} - 4int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{x^2}}}{2} - 4 	imes frac{1}{2}int {cos 2u{kern 1pt} {	ext{d}}u}  - 4 	imes frac{1}{2}int {1{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{x^2}}}{2} - sin 2u - 2u hfill \  sin left( {2arcsin frac{x}{2}} 
ight) = xsqrt {1 - frac{{{x^2}}}{4}} , hfill \   =  - xsqrt {1 - frac{{{x^2}}}{4}}  + frac{{{x^2}}}{2} - 2arcsin frac{x}{2} + C hfill \ end{gathered} ]

[egin{gathered}   =  - frac{{xsqrt {4 - {x^2}} }}{2} + frac{{{x^2}}}{2} - 2arcsin frac{x}{2} + C hfill \  intlimits_{ - 2}^2 {(x - sqrt {4 - {x^2}} )} {kern 1pt} {	ext{d}}x =  - 2pi  hfill \ end{gathered} ]

148.

[egin{gathered}  int {sqrt {{x^4} + {x^3}} {kern 1pt} {	ext{d}}x}  = int {{x^{frac{3}{2}}}sqrt {x + 1} {kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},{x^2} = {u^4},x = {u^2}, hfill \   = 2int {{u^4}sqrt {{u^2} + 1} {kern 1pt} {	ext{d}}u}  hfill \  u = 	an v,v = arctan u,frac{{{	ext{d}}u}}{{{	ext{d}}v}} = {sec ^2}v, hfill \   = 2int {{{sec }^2}v{{	an }^4}vsqrt {{{	an }^2}v + 1} {kern 1pt} {	ext{d}}v}  hfill \   = 2int {{{sec }^3}v{{	an }^4}v{kern 1pt} {	ext{d}}v}  hfill \   = 2int {{{sec }^7}v{kern 1pt} {	ext{d}}v}  - 4int {{{sec }^5}v{	ext{d}}v}  + 2int {{{sec }^3}v{kern 1pt} {	ext{d}}v}  hfill \  {	ext{# }}int {{{sec }^n}v{kern 1pt} {	ext{d}}v}  = frac{{n - 2}}{{n - 1}}int {{{sec }^{n - 2}}v{kern 1pt} {	ext{d}}v}  + frac{{{{sec }^{n - 2}}v	an v}}{{n - 1}}, hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {	an v + sec v} 
ight)}}{8} + frac{{{{sec }^5}v	an v}}{3} - frac{{7{{sec }^3}v	an v}}{{12}} + frac{{sec v	an v}}{8} hfill \  	an left( {arctan u} 
ight) = u,sec left( {arctan u} 
ight) = sqrt {{u^2} + 1} , hfill \   = frac{{ln left( {sqrt {{u^2} + 1}  + u} 
ight)}}{8} + frac{{u{{left( {{u^2} + 1} 
ight)}^{frac{5}{2}}}}}{3} - frac{{7u{{left( {{u^2} + 1} 
ight)}^{frac{3}{2}}}}}{{12}} + frac{{usqrt {{u^2} + 1} }}{8} hfill \   = frac{{ln left( {sqrt {x + 1}  + sqrt x } 
ight)}}{8} + frac{{sqrt x {{left( {x + 1} 
ight)}^{frac{5}{2}}}}}{3} - frac{{7sqrt x {{left( {x + 1} 
ight)}^{frac{3}{2}}}}}{{12}} + frac{{sqrt x sqrt {x + 1} }}{8} + C hfill \   = frac{{3ln left( {sqrt {x + 1}  + sqrt x } 
ight) + sqrt x sqrt {x + 1} left( {8{x^2} + 2x - 3} 
ight)}}{{24}} + C hfill \ end{gathered} ]
推薦閱讀:

如何學好高等數學
高等代數(第五版)【課後習題答案】
有個教授(2)
幾何矢量
積分練習草稿7

TAG:高等數學 | 高等數學大學課程 | 微積分 |