減縮積分與數值自鎖

減縮積分與數值自鎖

來自專欄 力學知識

一個曲線連續性的定義為:A curve can be said to have C^n continuity if {displaystyle displaystyle {frac {d^{n}s}{dt^{n}}}} is continuous of value throughout the curve.

對於一個多元函數 g(x,y) ,如果 frac{partial ^n g}{partial x^n} 是連續的,那麼就可以稱這個函數在 x 方向具備 C^n 連續性。

An n -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n ? 1 or less by a suitable choice of the points x_i and weights w_i for i = 1, ..., n . The domain of integration for such a rule is conventionally taken as [?1, 1] , so the rule is stated as

{displaystyle int _{-1}^{1}f(x),dx=sum _{i=1}^{n}w_{i}f(x_{i}).}

Gaussian quadrature as above will only produce good results if the function f(x) is well approximated by a polynomial function within the range [?1, 1] .

考慮積分 int_{-1}^{1}f(x)dx ,採用Gauss積分來對其進行計算。若函數 f(x) 具備 C^n 連續性,則必須布置 n 個Gauss積分點才能對

推薦閱讀:

正則變換
abaqus的XFEM(擴展有限元)使用限制
反開普勒問題
速度 加速度
Hamilton-Jacobi方程

TAG:力學 | 結構工程 |