標籤:

獵犬追狐狸

一隻狐狸以不變的速率 v_1 沿直線AB逃跑,獵犬以不變的速率 v_2 追擊,其追擊方向始終對準狐狸。某時刻狐狸在AB上的F處,獵犬在D處,FD⊥AB, overline{FD}=L ,如圖所示。設 v_2 > v_1 ,問獵犬追上狐狸還需多長時間?

解:建立坐標系,如圖:

tan	heta=-frac{dy}{dx}

x_1=x+ycot	heta=x-yfrac{dx}{dy}

frac{dx_1}{dy}=frac{dx}{dy}-frac{dx}{dy}-yfrac{d^2x}{dy^2}

frac{dx_1}{dy}=-yfrac{d^2x}{dy^2}

dx_1=v_1dt

ds=v_2dt

ds=sqrt{(dx)^2+(dy)^2}

dx_1=v_1dt=frac{v_1}{v_2}ds=frac{v_1}{v_2}sqrt{1+left(frac{dx}{dy}
ight)^2}dy

frac{dx_1}{dy}=frac{v_1}{v_2}sqrt{1+left(frac{dx}{dy}
ight)^2}=-yfrac{d^2x}{dy^2}

gamma=frac{v_1}{v_2}u=frac{dx}{dy}

gammasqrt{1+u^2}=-yfrac{du}{dy}

frac{du}{sqrt{1+u^2}}=-frac{gamma}{y}dy

ln(u+sqrt{1+u^2})=-gamma lny+C

t=0時,y=L, u=frac{dx}{dy}=0 ,則 C=gamma lnL

ln(u+sqrt{1+u^2})=-gamma lny+gamma lnL

ln(u+sqrt{1+u^2})=gamma lnfrac{L}{y}

u+sqrt{1+u^2}=left(frac{L}{y}
ight)^gamma

1+u^2=left[left(frac{L}{y}
ight)^gamma-u
ight]^2=left(frac{L}{y}
ight)^{2gamma}+u^2-2uleft(frac{L}{y}
ight)^gamma

u=frac{1}{2}left[left(frac{L}{y}
ight)^{gamma}-left(frac{L}{y}
ight)^{-gamma}
ight]=frac{1}{2}left[left(frac{y}{L}
ight)^{-gamma}-left(frac{y}{L}
ight)^{gamma}
ight]

u=frac{dx}{dy}

dx=frac{1}{2}left[left(frac{y}{L}
ight)^{-gamma}-left(frac{y}{L}
ight)^{gamma}
ight]dy

x=frac{L}{2}left[frac{1}{1-gamma}left(frac{y}{L}
ight)^{1-gamma}-frac{1}{1+gamma}left(frac{y}{L}
ight)^{1+gamma}
ight]+C

t=0時,y=L,x=0

0=frac{L}{2}left(frac{1}{1-gamma}-frac{1}{1+gamma}
ight)+C

C=frac{L}{2}frac{2gamma}{1-gamma^2}=frac{gamma L}{1-gamma^2}

所以,獵犬的運動軌跡方程

x=frac{L}{2}left[frac{1}{1-gamma}left(frac{y}{L}
ight)^{1-gamma}-frac{1}{1+gamma}left(frac{y}{L}
ight)^{1+gamma}
ight]+frac{gamma L}{1-gamma^2}

式中, gamma=frac{v_1}{v_2}

當獵犬追上狐狸時

y=0

x^*=frac{gamma L}{1-gamma^2}

獵犬追上狐狸用的時間

t^*=frac{x^*}{v_1}=frac{L}{(1-gamma^2)v_2}


推薦閱讀:

關於麥克斯韋方程組的三兩事
弦,妙不可言(一)
International Olympiad in Theoretical Physics
繞軸旋轉矩陣
地球那麼多的水,都是從哪裡來的呢?

TAG:物理學 |