標籤:

[圖集] mnist

Input: 28*28=784

Output: 10*1=10

  • Average of different classes E(x_i),iin[0,9]

  • Eigenvectors of expected crossproduct matrix E(xx^T) (784*784).

  • Eigenvectors of expected crossproduct matrix E(x_3x_3^T) (784*784).

Fitted filters

Degenerate distribution for label (only "3" visible in training)

("3" and "6" visible in training)

Averaged "6" - Averaged "3"

Fully randomised labels

推薦閱讀:

ML領域的生物進化論,進化策略圖文詳解
實對稱矩陣的對角化
Inception-v2/v3結構解析(原創)
RNN Part 3-Back Propagation Through Time and Vanishing Gradients(BPTT演算法和梯度消失)

TAG:神經網路 |