分段函數的複合函數要怎麼求(1)

聲明:本文為原創文章,首發於微分公眾號「湖心亭記」

相關鏈接分段函數的複合函數要怎麼求(2)

求分段函數的複合函數,這是考研高數中的一個重要考點。專升本的高數不考這個。因此專升本考試的考生可略過。今天我們就來詳細說一下這樣的題目應該怎麼做。

有的老師會給大家提供用幾何方法(數形結合方法來做)。但是我個人是不太喜歡畫圖的。一個是因為分段函數畫圖有時候容易畫圖,一個是因為畫圖的方法不好形成具體的做題步驟。所以我介紹的是用代數的方法來做的。

首先題目類型是:f(x)和g(x)是兩個分段函數f[g(x)]

我們的解題方法是:依據f(x)中的x的範圍,求出g(x)在該範圍下的表達式和對應自變數的範圍,然後回代替換即可。

好了,廢話不多說,我們先看一個例子。

例1[fleft( x 
ight) = left{ egin{array}{l} {e^x}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < 1\ {x^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge 1 end{array} 
ight.][gleft( x 
ight) = left{ egin{array}{l} x + 2{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < 0\ {x^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge 0 end{array} 
ight.] ,求 [fleft[ {gleft( x 
ight)} 
ight]]

解析:(1)我們先寫出 [fleft[ {gleft( x 
ight)} 
ight]] 的表達式。這種寫法要記住,形成格式。如下

[fleft[ {gleft( x 
ight)} 
ight] = left{ egin{array}{l} {e^{gleft( x 
ight)}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} gleft( x 
ight) < 1\ {left[ {gleft( x 
ight)} 
ight]^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} gleft( x 
ight) ge 1 end{array} 
ight.]

(2)下面我的目標就是要把上式中的 [gleft( x 
ight)] 替換成具體的關於x的表達式,後面的範圍也替換成具體的x的範圍。所以我們的思路自然而然的是要尋找 [gleft( x 
ight) < 1] [gleft( x 
ight) ge 1] 下的具體的x的表達式和範圍了。顯然要分類討論。

如下:

[gleft( x 
ight) < 1]

① 當x<0

[gleft( x 
ight) = x + 2 < 1{kern 1pt} {kern 1pt} {kern 1pt} Rightarrow {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < - 1]

故此時 [x < - 1] ,且 [gleft( x 
ight) = x + 2]

② 當 [x ge 0]

[gleft( x 
ight) = {x^2} - 1 < 1 Rightarrow - sqrt 2 < x < sqrt 2 ]

[0 le x < sqrt 2 ] ,且 [gleft( x 
ight) = {x^2} - 1]

[gleft( x 
ight) ge 1]

① 當x<0

[gleft( x 
ight) = x + 2 ge 1{kern 1pt} {kern 1pt} {kern 1pt} Rightarrow {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge - 1]

故此時 [ - 1 le x < 0] ,且 [gleft( x 
ight) = x + 2]

② 當 [x ge 0]

[gleft( x 
ight) = {x^2} - 1 ge 1 Rightarrow x ge sqrt 2 ][x le - sqrt 2 ]

[x ge sqrt 2 ] ,且 [gleft( x 
ight) = {x^2} - 1]

(3)好了,具體的範圍和表達式都求出來了。我們來做個總結如下

因此有 [gleft( x 
ight) < 1][left{ egin{array}{l} gleft( x 
ight) = x{
m{ + }}2{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < - 1\ gleft( x 
ight) = {x^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} 0 le x < sqrt 2 end{array} 
ight.]

[gleft( x 
ight) ge 1][left{ egin{array}{l} gleft( x 
ight) = x{
m{ + }}2{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} - 1 le x < 0\ gleft( x 
ight) = {x^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge sqrt 2 end{array} 
ight.]

(4)按照我們的總結進行回代到(1)中的式子,如下

因此有 [fleft[ {gleft( x 
ight)} 
ight] = left{ egin{array}{l} {e^{x + 2}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < - 1\ {e^{{x^2} - 1}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} 0 le x < sqrt 2 \ {left( {x + 2} 
ight)^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} - 1 le x < 0\ {left( {{x^2} - 1} 
ight)^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge sqrt 2 end{array} 
ight.]

整理後如下

[fleft[ {gleft( x 
ight)} 
ight] = left{ egin{array}{l} {e^{x + 2}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x < - 1\ {left( {x + 2} 
ight)^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} - 1 le x < 0\ {e^{{x^2} - 1}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} 0 le x < sqrt 2 \ {left( {{x^2} - 1} 
ight)^2} - 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x ge sqrt 2 end{array} 
ight.]

===================================

所以大家可以看到,嚴格遵循以上的四個步驟,邏輯嚴密,而且絕不會出錯。是不是顯得題目其實也簡單許多啊。

下面再舉一道例題,我就不詳細解出每一步的思路意圖了。直接給步驟答案,讓大家再體會一下分段函數求複合函數的解法。如下。


推薦閱讀:

積分習題及詳解12
極坐標系
多元函數如何求極限

TAG:高等數學 | 微積分 | 函數 |