4小時學會雅達利遊戲,AI需要幾台電腦?
原作 Felipe Petroski Such, Kenneth O. Stanley and Jeff Clune
Root 編譯自 Uber Engineering blog量子位 出品 | 公眾號 QbitAI
一台足矣。
昨天,優步AI Lab開源了深度神經進化的加速代碼。其博客上稱,哪怕用戶只有一台電腦(台式機),用這個代碼也能訓練出會打雅達利的AI。而且只需要4!小!時!
要知道,此前用深度神經進化方法,讓AI一小時學會玩雅達利,需要720個CPU。
720個CPU啊……誰來算算要多少錢……
別費勁算了。反正就是貴到爆炸。想訓練出自己的AI?不是壕根本不要想。
優步還是決心伸出援手,拉貧苦大眾一把。他們研發出這個深度神經進化加速代碼,是希望降低AI研究的資金門檻。至少讓那些窮得只能買得起遊戲配置的學生們,想自己動手玩玩AI時還有機會。
用神經進化技術,解決深度強化學習問題是非常promising的。玩雅達利(↖)和MuJoCo機器人運動模擬(↗)都可以用神經進化技術。
只用一台電腦,4小時?怎麼做到的?
弱弱地先補充個小前提:這台式電腦的配置得高端一點。
事實上,高端的台式電腦是有幾十個虛擬核的,這相當於中型計算集群了。
如果能恰當的平行運行評估環節的話,那原本需要720核CPU跑1小時的任務現在48核的個人電腦只要16小時。
但別忘了高端的電腦還有GPU可以用,畢竟GPU跑深度神經網路更快。
- 整體思路:CPU和GPU同時用起來
優步這次開源的代碼可以同時最大化「榨」干CPU和GPU。讓GPU跑深度神經網路,讓CPU跑電子遊戲或物理模擬器,然後平行批量運行多個評估程序。另外,它也包含調整過的TensorFlow運算,這對於訓練速度的提高相當重要。
- 先改進GPU
在優步的setup里,運行單個神經網路,用CPU比GPU要快。
但GPU更擅長平行運行多個神經網路。
所以,為了充分發揮GPU的優勢,優步把多個神經網路整合到了一起,放在同一批里運行。這種做法,在神經網路研究里還是挺常見的,通常用於同樣的神經網路處理不同的輸入的情況。
不過,神經網路的進化是不一樣的。它需要用到不同類的神經網路。這對記憶的容量要求就變高了。
一開始,優步AI研究團隊用基礎的TensorFlow運算跑了一次,只用8小時就搞定。但他們覺得還有空間優化。
於是,他們進一步調整TensorFlow,增加了兩類自定義的運算,於是速度又提升了一倍,訓練用時再降到4小時。
其中,第一個自定義TensorFlow運算顯著加速了GPU。它專門針對強化學習中的異構神經網路強化學習運算,比如雅達利遊戲和大多數機器人運動模擬任務,在這些任務中,各個神經網路的訓練周期長度都不同。有了這個自定義運算,GPU可以只調用必需的神經網路進行運算,而不必每一次任務都跑完所有的網路,這樣能夠大大節省計算量。
- 再針對CPU
上述提到的所有改進,側重點都在GPU上。不過,GPU快到一定程度,也會受制於CPU的速度。為了提高CPU運行遊戲模擬器的表現,就需要第二個自定義的TensorFlow運算。
具體來說,就是把雅達利模擬器的wrapper從Python改成自定義TensorFlow指令(reset,step,observation)。
這樣不僅能利用TensorFlow多線程的快速處理能力,還避免了因為Python和TensorFlow相互作用而造成的減速。
總體上,這些調整極大地提升了雅達利模擬器的運行速度。確切來說,大概是原來的3倍。
對於任何一個域(比如雅達利模擬器、物理模擬器等)里包含多個實例的強化學習研究,上面提到的這些創新方法都能幫它們加速。這類研究越來越常見,比如深度Q學習DQN,或策略梯度A3C的強化學習都是這樣。
分開優化後,整體再協調
單拎GPU或CPU來看,速度上已經提升到極致了。但下一個要面臨的挑戰是如何讓所有的計算資源都同時開動起來。
比方說,我們在每個神經網路上都加個前饋傳遞,問它當下狀態應該採取什麼行動,那麼當每個神經網路計算答案的時候,運行遊戲模擬器的CPU只能空轉。
同樣,如果我們問域模擬器——現在這些行為會產生什麼狀態,那麼CPU在模擬出結果的時候,GPU就沒事幹了。
下圖就是CPU+GPU多線程的示意圖。
從這張圖可以了解到,如何逐步優化強化學習里處理不同類型神經網路的運行效果。
藍框指的是域模擬器,在這篇文章里是雅達利遊戲模擬器,或者是MuJoCo物理模擬器。這兩個模擬器都有不同時間長度的場景。
最左側,是最原始的處理方法,效果最差。既沒有充分利用到平行計算的能力,也沒浪費了GPU或CPU等待對方處理數據的時間。
中間是多線程方法稍微好一點,一個CPU可以同時處理多個模擬任務,等到GPU運行時,也可以接上CPU處理好的多組數據。不過還是存在互相等造成的時間浪費。
優步的方法是CPU+GPU流水線法。其中,CPU不帶停的。在GPU處理CPU數據的時候,CPU並沒有閑下來,繼續馬不停蹄地處理更多的數據。
4百萬參數的神經網路,用優步個方法,4個小時就能搞定。
流水線法的意義
又快又便宜。
這直接降低了研究門檻,使得更多自學AI的人,尤其是學生群體,也可以訓練出自己想要的深度神經網路了。
效率大大提升的代碼將會促進研究更高速的發展。
優步自己就受益匪淺。
他們針對遺傳演算法發布的大型超參數搜索,所花預算是只是原來的一部分。而且在大部分的雅達利遊戲里的表現都獲得了提升。具體數字請看優步更新的論文。(https://arxiv.org/abs/1712.06567)
另外,這代碼還能縮短神經進化迭代的周期,AI研究人員可以更快地嘗試新的想法,也願意去試原先很大耗時很久的網路了。
優步AI lab研發的軟體庫包含深度遺傳演算法的實施,源自Saliman等工作的進化策略演算法,還有優步自家據說超級好用隨機搜索控制。
深度神經進化領域裡,近期還有很多里程碑意義的工作。感興趣的可以進一步了解以下機構的工作:
OpenAI:https://blog.openai.com/evolution-strategies/
DeepMind:https://deepmind.com/blog/population-based-training-neural-networks/
Google Brain:https://research.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html
Sentient:https://www.sentient.ai/blog/evolution-is-the-new-deep-learning/
https://github.com/uber-common/deep-neuroevolution/tree/master/gpu_implementation
— 完 —
歡迎大家關注我們的專欄:量子位 - 知乎專欄
誠摯招聘
量子位正在招募編輯/記者,工作地點在北京中關村。期待有才氣、有熱情的同學加入我們!相關細節,請在量子位公眾號(QbitAI)對話界面,回復「招聘」兩個字。
量子位 QbitAI · 頭條號簽約作者
?? ? 追蹤AI技術和產品新動態
推薦閱讀: