Leetcodes Solutions 51 N-Queens
匯總
雪之下雪乃:leetcode解題總匯The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens placement, where Q
and .
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."]]
思路1
直接試每個位置是否和合法。
class Solution {public: vector<vector<string> > solveNQueens(int n) { vector<vector<string> > res; vector<string> nQueens(n, string(n, .)); solveNQueens(res, nQueens, 0, n); return res; }private: void solveNQueens(vector<vector<string> > &res, vector<string> &nQueens, int row, int &n) { if (row == n) { res.push_back(nQueens); return; } for (int col = 0; col != n; ++col) if (isValid(nQueens, row, col, n)) { nQueens[row][col] = Q; solveNQueens(res, nQueens, row + 1, n); nQueens[row][col] = .; } } bool isValid(vector<string> &nQueens, int row, int col, int &n) { //check if the column had a queen before. for (int i = 0; i != row; ++i) if (nQueens[i][col] == Q) return false; //check if the 45° diagonal had a queen before. for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j) if (nQueens[i][j] == Q) return false; //check if the 135° diagonal had a queen before. for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j) if (nQueens[i][j] == Q) return false; return true; }};
推薦閱讀:
※浙江大學-數據結構-選講Huffman Codes-7.4.3
※浙江大學-數據結構-小白專場:C語言實現如何建立圖-6.5.3
※浙江大學-數據結構-小白專場:最小路徑問題-7.1.1
※浙江大學-數據結構-歸併排序-9.4.2
※浙江大學-數據結構-簡單排序-9.1.2