短視頻流量秘密武器,曝光短視頻主間差距的真相
就演算法機制平台而言,播放量絕大部分取決於【推薦量】
以今日頭條為例:
短視頻上傳並審核後進入推薦系統,系統識別短視頻內容的分類,標題等標籤信息後試探性推薦給首批目標用戶,根據用戶反饋進行多批次推薦或停止推薦。
整合全部影響【推薦量】的因素及演算法模型邏輯後,將其劃分為兩大板塊——轉化率,熱度
轉化率=
推薦給目標用戶後獲得的播放量/推薦量
這很好理解,如果演算法機制是人的話,費力氣將你的短視頻推給了10000個用戶,最後只有1個用戶點擊播放,鬼才會繼續把精力放你身上~
系統每批次推薦量的量級都是根據上一批次推薦後的【轉化率】來評估的。
即,如果首次推薦的轉化率差,後面當然不會再獲得推薦~
因此【推薦給目標用戶後獲得的播放量】就變得至關重要,是影響轉化率的唯一變數,直接決定著推薦量的多與少。
而【推薦給目標用戶後獲得的播放量】的4大決定因素是:1.分類 2.標題 3.用戶垂直精準度 4.封面
用大白話總結來說就是:取決於誰會看? 看不看?
讓我們模擬一遍推薦流程中來思考:
Step.1 短視頻A進入推薦系統後,系統根據其上傳設定的分類「體育」將其放置於體育分類池中。
——分類
Step.2 系統抓取短視頻A標題《姚明大動作,男籃設兩隊兩主帥》中的關鍵詞,「姚明」,「男籃」。
——標題
Step.3 系統匹配用戶數據中標有「姚明」「男籃」所對應「體育」「籃球」「姚明」「男籃」等標籤的用戶,小量級試探性推薦,觀察用戶是否感興趣觀看並有良性反饋。
——用戶垂直精準度
——標題+封面
Step.4 繼而擴大量級推薦,並根據「姚明」,「男籃」關聯更多關鍵詞及標籤用戶,如「NBA」,"CBA","奧尼爾"等......
——用戶垂直精準度
舉個栗子:「金秒獎」第一季度累計3.04億播放量的10166個參賽短視頻,逐一就【轉化率】的影響因素進行數據驗證及運營建議:
標題
將全部10166個參賽短視頻的標題提取後,劃分標題字數長度區間並匹配平均播放量,得出趨勢如下:
請點擊此處輸入圖片描述
標題字數長度在5-10個字內的短視頻平均播放量最低;
標題字數長度在25-30個字內的短視頻平均播放量最高;
標題字數長度與平均播放量整體呈遞增趨勢。
請點擊此處輸入圖片描述
A.從系統抓取標題中關鍵詞層面來說,
字數越多越有空間包含更多的關鍵詞信息,從而使得系統識別更明晰更豐富,得以推薦更精準垂直的目標用戶,獲得更多的播放量。
若標題內可識別關鍵詞信息過少或對應標籤缺失,推薦系統只得無目標「試探性」推薦,無法保障推薦的用戶垂直精準度,自然難以獲得良性反饋。
B.從用戶閱讀標題時可接收到的內容信息量來說,
字數越多越有空間將短視頻內容表達完整及包裝,起承轉合,徐徐誘之,獲得更多的播放量。
請點擊此處輸入圖片描述
那麼,哪些詞能夠get到用戶的G點,使得用戶在閱讀標題的3秒內,獲得百發百中的刺激反應呢?
我們將全部10166個參賽短視頻的標題進行自然語言處理,提取高頻詞,再以平均播放量為基準進行排序整理。
最熱名詞:
絕活,解放軍,結婚,農村,武器,美女,中國,舞蹈,真相,姿勢,答案,秘密,做法;
最熱動詞:
吐槽,發現,盤點,曝光,揭秘;
最熱形容詞:
火爆,神秘,可怕,第一,厲害,奇葩;
最熱副詞:
終於,竟然;
最熱連詞:
結果;
互聯網閱讀場景下,標題的存在不再是傳統意味上的「畫龍點睛」。背負「誘發點擊」功能的標題與其說是語言藝術,不如說是心理學藝術。
標題直接決定著用戶是否會點擊播放,觀察了10166個參賽短視頻中高播放量的短視頻並結合上述片語,發現分段式結構的故事性標題更能完成「誘發點擊」的任務。
最熱副詞:終於,竟然;使得標題內的關鍵元素形成衝突,
最熱連詞:結果的脫穎而出也驗證著前因後果留懸念的句式更有內容性,劇情轉折呈現力更強,衝擊用戶情緒。
參賽作品中電影解說內容短視頻「宇哥講電影」就深諳其道:
請點擊此處輸入圖片描述
同一視頻,「宇哥講電影」在其他平台仍主打主流的《X分鐘看完XXX》格式,在今日頭條卻定製了專屬標題。
其對李安導演的《喜宴》解說短視頻,標題起名為《親友鬧洞房時不知新娘新郎其實是假結婚,這下只能假戲真做了!》,輕鬆獲得350萬播放量。
並不推薦標題黨或固定標題模型來突破播放量門檻,而是要在大量的觀察和分析後,了解平台的用戶接收習慣或文案取向風格來做突破,才是長久之道。
標題黨或固定標題模型反而容易被平台以技術手段排查。
封面
用戶瀏覽短視頻的信息流頁面時,平均停留時間很短暫,3秒鐘的有效時間內,如何利用封面將用戶的注意力鎖定?得以被閱讀標題,被播放?
我們通過對「金秒獎」第一季度全部10166個參賽短視頻進行觀察,發現高播放量短視頻的封面製作規律:
NO.1 封面與短視頻內容的調性統一
請點擊此處輸入圖片描述
內容調性,簡單說就是潛在受眾會喜愛的內容風格。喜愛看《鄉村愛情故事》的觀眾與喜愛看《花樣男子》的觀眾很難在審美層面達成一致。沒有必要盲目跟隨頭部內容潮流,封面的色調,配色,設計只要堅持應和潛在受眾即可。
NO.2 畫面清晰度高,定製尺寸,景別以中景,特寫為主
請點擊此處輸入圖片描述
頭部內容每新發一個短視頻,配合各個平台不同的封面展現要求會輸出20張以上的封面圖,來保證預期清晰度,畫面不變形。同時,雙封面要求下,會根據封面展現形勢進行調整,重新設計。
除了向頭部內容學習,還有一個很好的方法,學習平台上「廣告」的封面圖。廣告投放的背後是高費用成本,人力成本與經驗成本的結果,每張廣告都有其借鑒價值和意義。
NO.3 高亮核心重點,彰顯戲劇張力
請點擊此處輸入圖片描述
含有劇情的搞笑,情感,資訊等類目短視頻,封面可採用短視頻中最有戲劇張力單幀的截圖,最誇張,最有表現力的表情或是容易誤解(污解)的片段,人物間要有交流意味。
分類
我們將全部10166個參賽短視頻進行分類並匹配各分類的平均播放量。又剔除了平均播放量不及10萬的「冷門兒」分類。
請點擊此處輸入圖片描述
除了傳統的美食、時尚、生活方式等變現能力強的垂直領域,隨著消費升級,受眾對資訊專業度的需求快速提升,如金融,健康,教育等類別正處於爆發前夜。
在推薦系統中,因內容分類冷門兒導致潛在目標用戶群過少而難以獲得推薦量的情況不勝枚舉。短視頻項目冷啟動階段,鎖定平台熱門分類去輸出內容的確會相對獲得好成績。
主流受眾「把持」的推薦機制正是泛娛樂內容起量快的主要原因。
然而同樣的,在推薦機制中,同類標籤(垂直內容)的短視頻作品互有助力,「抱團成長」。用戶行為反饋的數據與收益,在不斷喚起更細分內容的啟動和專精。長尾效應下,越是大量級平台,垂直內容培育就越需要更多的時間,但前景必然一片大好。
另,單個賬號專註單一垂直分類非常的重要。
系統在前期識別並確認賬號的分類領域後,當該賬號發布不屬於已確認的分類領域的內容時,系統需要重新識別分類再進行推薦。
這導致會延長推薦啟動時間,無法在規定時效內,推薦給絕對目標用戶。自然難以拿到良好的【轉化率】成績。播放量也不會很理想。
就高播放量的參賽短視頻作品進行觀察,其主體賬號分類非常統一,如有多個細分短視頻欄目,採取的是註冊多個賬號來規避以上風險。
熱度=用戶反饋
讓我們重溫下推薦流程,
短視頻上傳並審核後進入推薦系統,系統識別短視頻內容的分類,標題等標籤信息後試探性推薦給首批目標用戶,根據用戶反饋進行多批次推薦或停止推薦。
所謂的用戶反饋即是決定【推薦量】的另一大板塊——熱度
用戶反饋包括了1.評論 2.點贊 3.分享 4.播放完成度
分享,評論,點贊
我們將全部10166個參賽短視頻以播放量為基準進行區分,分為0-1萬播放量,1-10萬播放量,10萬+播放量三個樣本組。匹配相應的平均評論量,平均點贊量,平均分享量。
請點擊此處輸入圖片描述
用戶反饋行為與播放量呈正相關。
近期愈發多的短視頻主感知在己身沒有調整的情況下,同比16年推薦量變少.......是因為,很多短視頻主未重視的「用戶反饋行為數據」在推薦系統中的權重升高。
首先,演算法機制平台多以資訊平台起家,在海量內容開荒收割用戶市場時期,用戶粘性通過資訊內容的「取之不竭」及高興趣匹配度的識別手段來維繫。
而內容平台階段時期,整體戰略及運營策略發生轉變。
在內容提供方與平台處於賣方市場關係,在內容提供方需要更強的商業變現空間和機制,在用戶停留幾率取決於內容提供方等幾點需求下,內容提供方與用戶的強聯繫及機制必然需要建立。
這是趨勢性問題,平台在其中也將所獲頗豐。
推薦閱讀:
※二更每日千萬流量短視頻,是如何誕生的?
※揭曉短視頻在2018年爆火的背後之謎
※自媒體新手如何30分鐘內製作出100w+的短視頻?今日頭條新手號7天快速轉正方法揭秘!
※如何在「末世殭屍潮」中倖存?看技能短視頻就對了
※創意|曼妥思腦洞短視頻《一個選擇恐懼者的一生》