如何利用神經網路進行反欺詐!
摘要: 如何利用神經網路訓練自己的反欺詐模型,看看吧~附學習資料~
想像一下,只需使用臉部即可解鎖手機,無需指紋掃描或觸摸。它會在沒有任何用戶干預的情況下自動且完美地工作。是的,目前已經可以做到了這一點,它被稱為iPhone X,你可能已經在使用它了。
大多數人希望有一個更好的未來,例如:使用人臉識別進行用戶身份驗證的潛力比這更大!在不遠的將來,我們能夠通過展示我們獨特的面部特徵來租一輛車,並簽署法律文件。
實際上,我們已經開始看到需要身份驗證的某些服務(如銀行和其他類型的交易系統)。在這種情況下,所提供的法律數據將與文件上的ID和面部圖像上的數據進行交叉檢查,並與所有者的面部進行比較。但是,像大多數新技術一樣,技術在創新,騙子也在創新。而欺騙人臉識別機制的最流行方式之一是「人臉欺騙」攻擊。
欺騙攻擊是指通過使用照片、視頻或授權人臉部的其他替代品來獲取其他人的特權或訪問權。
一些欺騙攻擊的例子:
1. 列印攻擊:攻擊者將別人的照片列印或者顯示在數字設備上。
2. 重播/視頻攻擊:誘騙系統的更複雜的方式,通常需要一個受害者臉部的循環視頻。與保持某人的照片相比,這種方法可以確保行為和面部運動看起來更自然。
3. 3D掩碼攻擊:在這種類型的攻擊中,掩碼被用作欺騙的首選工具。這是一個比利用臉部視頻更複雜的攻擊。除了自然的面部運動之外,它還可以欺騙一些額外的保護層,例如深度感測器。
欺騙檢測方法:
欺騙的方法有很多種,對應的我們有許多不同的方法來應對它們的挑戰。最流行的反欺騙最先進的解決方案包括:
1. 面部生命力檢測:一種基於分析測試面如何「活著」的機制。這通常通過檢查眼球運動來完成,例如閃爍和臉部運動。
2. 上下文信息技術:通過調查圖像的周圍環境,我們可以嘗試檢測掃描區域中是否有數字設備或照片紙。
3. 紋理分析:在這裡探測輸入圖像的小紋理部分,以便在欺騙和真實圖像中查找圖案。
4. 用戶互動:通過要求用戶執行動作(將頭部向左/向右轉動,微笑,閃爍的眼睛),機器可以檢測動作是否以與人類互動類似的自然方式進行。
當然,我們不能忽視房間里的大象(指某種巨大到不可能被忽視的真相,而事實上如此巨大的大象常常被集體忽略。)——iPhone X上的FaceID。在最新的硬體迭代中,Apple推出了先進的深度映射和3D感應技術,可以以前所未有的精度實現欺騙檢測。但是,由於這種高端硬體在不久的將來將無法在大多數消費類設備上使用,所以我們不得不進化我們的技術以保證我們可以避免被欺騙。
事實上,在我們的研究和實施過程中,我們發現使用中等質量的2D相機也可以實現極高水平的實時欺騙檢測。到底是什麼讓2D相機擁有如此高的檢測水準?答案就是當下最火的深度學習解決方案和自定義的神經網路。
我們通過與現有的文檔化方法進行交叉檢查來驗證我們的方法。
交叉檢查1:圖像質量評估
該解決方案基於將原始圖像與用高斯濾波處理的圖像進行比較。該論文的作者[1]證明了假圖像之間的差異與真實圖像之間的差異,並且可以自動檢測。為了做到這一點,我們提取了14種流行的圖像質量特徵,例如:均方誤差,平均差或邊緣/角差。下一步是將它們發送給分類器,以確定它是「真實」的臉還是「假的」臉。
圖1. IQA分類處理流程:將圖像轉換為灰度,使用高斯濾波器,從原始圖像和濾波圖像之間的差異中提取14個特徵,將特徵傳遞給分類器。
交叉檢查2:圖像失真分析
四種不同的特徵(鏡面反射、模糊、色度矩和色彩多樣性)被發送分類器用於分類。分類器由多個模型構建而成,每個模型都訓練出不同類型的欺騙攻擊矢量。
圖2. IDA分類過程流程:提取4個失真特徵,將它們傳遞給一組分類器,將結果傳遞給負責欺騙/非欺騙決策的分類器
最終方法:深度神經網路模型
這是基於用CNN(卷積神經網路,這是圖像分析中最流行的神經網路)建立的模型。裁剪後的人臉圖像被傳遞到神經網路,然後通過神經層進行處理,以將其分類為真實/假的。
圖3. DNN分類處理流程:將面部圖像傳遞到CNN
訓練系統:
上述所有解決方案都包含了需要監督學習才能返回正確結果的模型。訓練集是從站在攝像機前面的人們的圖像構建的,或者拿著一個設備,並在其上顯示他們的臉部。所有的面孔被裁剪並分成兩組:真實的和假的。這些圖像是由中等解析度的800萬像素相機拍攝的,這是一款在工業應用中使用的流行款式,三種方法都使用相同的訓練集。
訓練集示例
比較結果:
對於性能測試,我們使用簡單的精確度、召回率和F1分數。所有三個實驗的結果顯示在下表中:
下一步是什麼?
所呈現的最先進的解決方案僅適用於2D重放/視頻攻擊。為了增加對更多類型攻擊的抵抗能力,DNN模型還可以通過使用紙質列印的攻擊示例擴展訓練數據來調整。另外,3D欺騙嘗試可以通過附加感測器來處理(例如深度)。
安全是一個不斷變化的問題,因為一旦引入新的保護方法,攻擊者就會不斷發現新的方法來破壞系統,我們需要不斷發明一些新的方法來對抗那些攻擊者!
參考文獻:
1.
基於通用圖像質量評估的反欺騙,Javier Galbally,SébastienMarcel
2.
圖像失真分析的臉部欺騙檢測,di wen,huha,Anil K. Jain
3.
Biometric Antispoofing Methods:A Survey in Face Recognition,Javier Galbally,SébastienMarcel,Julian Fierrez
本文由阿里云云棲社區組織翻譯,譯文鏈接:http://click.aliyun.com/m/46070/
文章原標題《Anti-Spoofing Mechanisms in Face Recognition Based on DNN》
作者:YND
譯者:烏拉烏拉,審校:。
文章為簡譯,更為詳細的內容,請查看原文文章。
更多技術乾貨敬請關注云棲社區知乎機構號:阿里云云棲社區 - 知乎
推薦閱讀:
※人工智慧的智能水平到底能到什麼層次?
※探索路人能聽得懂的深度學習(視頻更新中)
※群分享預告:AI在垂直行業的應用及中美對比
※人工智慧神助攻:亞馬遜進軍AI實體店超爽用戶體驗!
※10行命令感受機器學習的神奇(0基礎小白適用)
TAG:神經網路 | 深度學習DeepLearning | 人工智慧 |