數據嗨客 | 深度學習第3期:自編碼器

1. 什麼是自編碼器(Definition)

2. 為什麼要用自編碼器 (Motivation)

3. 堆疊自編碼器(Stacking Autoencoders)

(備註:點擊圖片可放大查看)

4. 自編碼器的變體 (Autoencoder Variants)

5. 小結

6. 參考文獻

[1]ufldl.stanford.edu/wiki

[2]Vincent, P., et al. Extracting and Composing Robust Features with Denoising Autoencoders. in the proceedings of the 25th international conference on Machine Learning. 2008.

[3]Sch?lkopf B, Platt J, Hofmann T. Greedy Layer-Wise Training of Deep Networks[C] International Conference on Neural Information Processing Systems. MIT Press, 2006:153-160.

[4]Rifai S, Vincent P, Muller X, et al. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction[C] ICML. 2011.

[5]Hou L, Nguyen V, Samaras D, et al. Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images[J]. 2017.

[6]Sankaran A, Vatsa M, Singh R, et al. Group Sparse Autoencoder[J]. Image & Vision Computing, 2017.


推薦閱讀:

TAG:深度學習DeepLearning | 大數據 | 數據科學 |