深度學習遇上推薦系統(一)--FM模型理論和實踐

作者:文文 個人公眾號:小小挖掘機(ID:wAIsjwj)

博客專欄:wenwen

配套視頻學習:三個月教你從零入門人工智慧!!| 深度學習精華實踐課程 (免費)三個月教你從零入門人工智慧!!| 深度學習精華實踐課程 (免費) 3000多位夥伴加入學習,美女老師主講

1、FM背景

在計算廣告和推薦系統中,CTR預估(click-through rate)是非常重要的一個環節,判斷一個商品的是否進行推薦需要根據CTR預估的點擊率來進行。在進行CTR預估時,除了單特徵外,往往要對特徵進行組合。對於特徵組合來說,業界現在通用的做法主要有兩大類:FM系列與Tree系列。今天,我們就來講講FM演算法。

2、one-hot編碼帶來的問題

FM(Factorization Machine)主要是為了解決數據稀疏的情況下,特徵怎樣組合的問題。已一個廣告分類的問題為例,根據用戶與廣告位的一些特徵,來預測用戶是否會點擊廣告。數據如下:(本例來自美團技術團隊分享的paper)

clicked是分類值,表明用戶有沒有點擊該廣告。1表示點擊,0表示未點擊。而country,day,ad_type則是對應的特徵。對於這種categorical特徵,一般都是進行one-hot編碼處理。

將上面的數據進行one-hot編碼以後,就變成了下面這樣 :

因為是categorical特徵,所以經過one-hot編碼以後,不可避免的樣本的數據就變得很稀疏。舉個非常簡單的例子,假設淘寶或者京東上的item為100萬,如果對item這個維度進行one-hot編碼,光這一個維度數據的稀疏度就是百萬分之一。由此可見,數據的稀疏性,是我們在實際應用場景中面臨的一個非常常見的挑戰與問題。

one-hot編碼帶來的另一個問題是特徵空間變大。同樣以上面淘寶上的item為例,將item進行one-hot編碼以後,樣本空間有一個categorical變為了百萬維的數值特徵,特徵空間一下子暴增一百萬。所以大廠動不動上億維度,就是這麼來的。

3、對特徵進行組合

普通的線性模型,我們都是將各個特徵獨立考慮的,並沒有考慮到特徵與特徵之間的相互關係。但實際上,大量的特徵之間是有關聯的。最簡單的以電商為例,一般女性用戶看化妝品服裝之類的廣告比較多,而男性更青睞各種球類裝備。那很明顯,女性這個特徵與化妝品類服裝類商品有很大的關聯性,男性這個特徵與球類裝備的關聯性更為密切。如果我們能將這些有關聯的特徵找出來,顯然是很有意義的。

一般的線性模型為:

從上面的式子很容易看出,一般的線性模型壓根沒有考慮特徵間的關聯。為了表述特徵間的相關性,我們採用多項式模型。在多項式模型中,特徵xi與xj的組合用xixj表示。為了簡單起見,我們討論二階多項式模型。具體的模型表達式如下:

上式中,n表示樣本的特徵數量,xi表示第i個特徵。

與線性模型相比,FM的模型就多了後面特徵組合的部分。

4、FM求解

從上面的式子可以很容易看出,組合部分的特徵相關參數共有n(n?1)/2個。但是如第二部分所分析,在數據很稀疏的情況下,滿足xi,xj都不為0的情況非常少,這樣將導致ωij無法通過訓練得出。

為了求出ωij,我們對每一個特徵分量xi引入輔助向量Vi=(vi1,vi2,?,vik)。然後,利用vivj^T對ωij進行求解。

那麼ωij組成的矩陣可以表示為:

那麼,如何求解vi和vj呢?主要採用了公式:

具體過程如下:

上面的式子中有同學曾經問我第一步是怎麼推導的,其實也不難,看下面的手寫過程(大夥可不要嫌棄字丑喲)

經過這樣的分解之後,我們就可以通過隨機梯度下降SGD進行求解:

5、tensorflow代碼詳解

代碼參考地址:https://github.com/babakx/fm_tensorflow/blob/master/fm_tensorflow.ipynb

上面的代碼使用的是python2編碼,在python3下運行會出錯,所以如果大家使用的是python3的話,可以參考我寫的,其實就是修復了幾個bug啦,哈哈。

我的github地址:

https://github.com/princewen/tensorflow_practice/tree/master/recommendation-FM-demo。

本文使用的數據是MovieLens100k Datase,數據包括四列,分別是用戶ID,電影ID,打分,時間。

輸入變換

要使用FM模型,我們首先要將數據處理成一個矩陣,矩陣的大小是用戶數 * 電影數。如何根據現有的數據進行處理呢?使用的是scipy.sparse中的csr.csr_matrix,理解這個函數真的費了不少功夫呢,不過還是在下面博客(https://blog.csdn.net/u012871493/article/details/51593451)的幫助下理解了函數的原理。盜用博客中的一張圖來幫助大家理解這個函數的輸入:

函數形式如下:

csr_matrix((data, indices, indptr)

可以看到,函數接收三個參數,第一個參數是數值,第二個參數是每個數對應的列號,第三個參數是每行的起始的偏移量,舉上圖的例子來說,第0行的起始偏移是0,第0行有2個非0值,因此第一行的起始偏移是2,第1行有兩個非0值,因此第二行的起始偏移是4,依次類推。

下面的代碼是如何將原始的文件輸入轉換成我們的矩陣:

def vectorize_dic(dic,ix=None,p=None,n=0,g=0): """ dic -- dictionary of feature lists. Keys are the name of features ix -- index generator (default None) p -- dimension of featrure space (number of columns in the sparse matrix) (default None) """ if ix==None: ix = dict() nz = n * g col_ix = np.empty(nz,dtype = int) i = 0 for k,lis in dic.items(): for t in range(len(lis)): ix[str(lis[t]) + str(k)] = ix.get(str(lis[t]) + str(k),0) + 1 col_ix[i+t*g] = ix[str(lis[t]) + str(k)] i += 1 row_ix = np.repeat(np.arange(0,n),g) data = np.ones(nz) if p == None: p = len(ix) ixx = np.where(col_ix < p) return csr.csr_matrix((data[ixx],(row_ix[ixx],col_ix[ixx])),shape=(n,p)),ixcols = [user,item,rating,timestamp]train = pd.read_csv(data/ua.base,delimiter= ,names = cols)test = pd.read_csv(data/ua.test,delimiter= ,names = cols)x_train,ix = vectorize_dic({users:train[user].values, items:train[item].values},n=len(train.index),g=2)x_test,ix = vectorize_dic({users:test[user].values, items:test[item].values},ix,x_train.shape[1],n=len(test.index),g=2)y_train = train[rating].valuesy_test = test[rating].valuesx_train = x_train.todense()x_test = x_test.todense()

如果不做處理,函數返回的矩陣是按如下的格式保存的:

使用todense變換後,變成如下樣式:

估計值計算

得到我們的輸入之後,我們使用tensorflow來設計我們的模型,其實很簡單啦,我們模型的估計值由兩部分構成,原始的可以理解為線性回歸的部分,以及交叉特徵的部分,交叉特徵直接使用我們最後推導的形式即可,再回顧一遍:

因此,我們需要定義三個placeholder,分別是輸入的x,輸入的y,以及我們的 用戶數*電影數大小的待學習的fm矩陣:

n,p = x_train.shapek = 10x = tf.placeholder(float,[None,p])y = tf.placeholder(float,[None,1])w0 = tf.Variable(tf.zeros([1]))w = tf.Variable(tf.zeros([p]))v = tf.Variable(tf.random_normal([k,p],mean=0,stddev=0.01))#y_hat = tf.Variable(tf.zeros([n,1]))linear_terms = tf.add(w0,tf.reduce_sum(tf.multiply(w,x),1,keep_dims=True)) # n * 1pair_interactions = 0.5 * tf.reduce_sum( tf.subtract( tf.pow( tf.matmul(x,tf.transpose(v)),2), tf.matmul(tf.pow(x,2),tf.transpose(tf.pow(v,2))) ),axis = 1 , keep_dims=True)y_hat = tf.add(linear_terms,pair_interactions)

定義損失函數

這裡我們定義的損失函數除了平方損失外,還加了l2正則項,並使用梯度下降法進行參數的更新:

lambda_w = tf.constant(0.001,name=lambda_w)lambda_v = tf.constant(0.001,name=lambda_v)l2_norm = tf.reduce_sum( tf.add( tf.multiply(lambda_w,tf.pow(w,2)), tf.multiply(lambda_v,tf.pow(v,2)) ))error = tf.reduce_mean(tf.square(y-y_hat))loss = tf.add(error,l2_norm)train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss)

模型訓練

接下來就是訓練啦,這段代碼比較好理解:

epochs = 10batch_size = 1000# Launch the graphinit = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init) for epoch in tqdm(range(epochs), unit=epoch): perm = np.random.permutation(x_train.shape[0]) # iterate over batches for bX, bY in batcher(x_train[perm], y_train[perm], batch_size): _,t = sess.run([train_op,loss], feed_dict={x: bX.reshape(-1, p), y: bY.reshape(-1, 1)}) print(t) errors = [] for bX, bY in batcher(x_test, y_test): errors.append(sess.run(error, feed_dict={x: bX.reshape(-1, p), y: bY.reshape(-1, 1)})) print(errors) RMSE = np.sqrt(np.array(errors).mean()) print (RMSE)

參考文章:

1、http://blog.csdn.net/bitcarmanlee/article/details/52143909

2、https://blog.csdn.net/u012871493/article/details/51593451


推薦閱讀:

送書 | AI插畫師:如何用基於PyTorch的生成對抗網路生成動漫頭像?
烏鎮互聯網峰會——人工智慧與法律問題
第一台獲得公民身份的機器人誕生,這將遇見什麼?
意識的定義:以抽象的方式認知事物規律,並能夠加以運用。
人工智慧法律服務的前景與挑戰有哪些?

TAG:深度學習DeepLearning | 人工智慧 | 機器學習 |