Machine Learning 學習資料
04-30
(更多請移步:Machine Learning 學習資料 @ zhwhong - 簡書)
Awesome系列
- Awesome Machine Learning
- Awesome Deep Learning
- Awesome TensorFlow
- Awesome TensorFlow Implementations
- Awesome Torch
- Awesome Computer Vision
- Awesome Deep Vision
- Awesome RNN
- Awesome NLP
- Awesome AI
- Awesome Deep Learning Papers
- Awesome 2vec
Deep Learning
- [Book] Neural Networks and Deep Learning中文翻譯(不完整): 神經網路與深度學習第五章中文翻譯: [譯] 第五章 深度神經網路為何很難訓練
- [Book] Deep Learning - MIT Press
- [Course] Deep Learning - Udacity
- [Course] Machine Learning by Andrew Ng - Coursera | 課程資料整理 @ zhwhong
- [Course] Convolutional Neural Networks for Visual Recognition(CS231n) | 課程資料整理 @ zhwhong
- [Course] Deep Learning for Natural Language Processing(CS224d) | 課程資料整理 @ zhwhong
- [View] Top Deep Learning Projects on Github
- [View] Deep Learning for NLP resources
- [View] 資源 | 深度學習資料大全:從基礎到各種網路模型
- [View] 深度學習新星:GAN的基本原理、應用和走向
- [Book] 推薦 | 九本不容錯過的深度學習和神經網路書籍
Frameworks
- TensorFlow (by google)
- MXNet
- Torch (by Facebook)
- [Caffe (by UC Berkley)(Caffe | Deep Learning Framework)
- [Deeplearning4j(Open-source, Distributed Deep Learning for the JVM)
- Brainstorm
- Theano、Chainer、Marvin、Neon、ConvNetJS
TensorFlow
- 官方文檔
- TensorFlow Tutorial
- TensorFlow 官方文檔中文版
- TensorFlow Whitepaper
- [譯] TensorFlow白皮書
- [API] API Document
入門教程
- [教程] Learning TensorFlow
- TensorFlow-Tutorials @ github (推薦)
- Awesome-TensorFlow (推薦)
- TensorFlow-Examples @ github
- tensorflow_tutorials @ github
分散式教程
- Distributed TensorFlow官方文檔
- distributed-tensorflow-example @ github (推薦)
- DistributedTensorFlowSample @ github
- Parameter Server
Paper (Model)
CNN Nets
- LeNet
- AlexNet
- OverFeat
- NIN
- GoogLeNet
- Inception-V1
- Inception-V2
- Inception-V3
- Inception-V4
- Inception-ResNet-v2
- ResNet 50
- ResNet 101
- ResNet 152
- VGG 16
- VGG 19
(註:圖片來自 Github : TensorFlow-Slim image classification library)
額外參考:
[ILSVRC] 基於OverFeat的圖像分類、定位、檢測
[卷積神經網路-進化史] 從LeNet到AlexNet[透析] 卷積神經網路CNN究竟是怎樣一步一步工作的?GoogLenet中,1X1卷積核到底有什麼作用呢?深度學習 — 反向傳播(BP)理論推導
Object Detection
- R-CNN
- Fast R-CNN
- Faster R-CNN
- FCN
- R-FCN
- YOLO
- SSD
額外參考:
[Detection] CNN 之 "物體檢測" 篇
計算機視覺中 RNN 應用於目標檢測Machine Learning 硬體投入調研
RNN & LSTM
- [福利] 深入理解 RNNs & LSTM 網路學習資料 @ zhwhong
- [RNN] Simple LSTM代碼實現 & BPTT理論推導 @ zhwhong
- 計算機視覺中 RNN 應用於目標檢測 @ zhwhong
- Understanding LSTM Networks @ colah | 中文翻譯[簡書] @ Not_GOD
- The Unreasonable Effectiveness of Recurrent Neural Networks @ Andrej Karpathy
- LSTM Networks for Sentiment Analysis (theano官網LSTM教程+代碼)
- Recurrent Neural Networks Tutorial @ WILDML
- Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) @ iamtrask
Stanford 機器學習課程整理
- [coursera 機器學習課程] Machine Learning by Andrew Ng @ zhwhong
- [斯坦福CS231n課程整理] Convolutional Neural Networks for Visual Recognition(附翻譯,下載) @ zhwhong
- [斯坦福CS224d課程整理] Natural Language Processing with Deep Learning @ zhwhong
- [斯坦福CS229課程整理] Machine Learning Autumn 2016 @ zhwhong
( 未經允許禁止轉載,轉載請註明出處:Machine Learning 學習資料 (zhwhong) ,謝謝!)
推薦閱讀:
TAG:機器學習 | 深度學習DeepLearning | 神經網路 |