超級推薦!Mathematics for Machine Learning

超級推薦!Mathematics for Machine Learning by Imperial College London and Coursera! 迄今為止,最beginner friendly的為了機器學習定製的高等數學入門課!!!

(帶寬不夠,搬運很辛苦,但是始終無人搬運這部神課程,所以不得不自己搬了!)

Mathematics for Machine Learning (Coursera, Imperial college of London)_嗶哩嗶哩 (゜-゜)つロ 乾杯~-bilibili?

www.bilibili.com圖標

希望大家能多多受益!


課程視頻與圖解筆記視頻目錄(共三課)

第一課:Linear Algebra for Machine Learning (已完結)

只有含「圖解」的視頻是筆記視頻,其他視頻為原課程視頻

1、introduction solving data science challenges with math

2、motivation for linear algebra

1、圖解學習linear algebra目的:高效求解大量linear equations 2、圖解學習linear algebra目的:高效求解模型參數擬合大量數據 3、圖解線性代數:線代如何切入幫助解決模型優化

3、getting a handle on vectors

4、operations with vectors

5、week1 summary

6、Introduction to module2 vectors

7、modulus and inner product

4、圖解線性代數:向量的本質和加乘運算 5、圖解線性代數:vector length and dot product

8、cosine and dot product

6、圖解線性代數:vector dot product, length, cosine

9、projection

7、圖解線性代數:scalar projection, vector projection 8、圖解線性代數:vector projection 與 vector transformation

10、changing basis

9、圖解線性代數:linear combination, independence, basis vector

11、basis, vector space, linear independence

10、圖解線性代數:vector, projection, basis vector在機器學習中的應用

12、applications of changing basis

13、summary week 2

14、matrices, vectors, soliving simultaneous equations

11、圖解線性代數:matrix簡介

15、how matrices transform space

12、圖解線性代數:用映射projection來理解matrix的變形能力

16、types of matrix transformation

13、圖解線性代數:機器學習的本質與matrix transformation的各種形態

17、composition or combination of matrix transformations

14、圖解線性代數:matrix疊加變形的直觀理解

18、solving apples banana problem gaussian elimination

19、going from gaussian elimination to finding the inverse matrix

15、圖解線性代數:inverse與identity matrix的理解和求解

20、determinants and inverses

16、圖解線性代數:determinant, inverse, dependence, solution

21、summary

22、introduction Einstein summation convention and symmetry of dot product

17、圖解線性代數:einstein summation convention and dot product的對稱性

23、doing a transformation in a changed basis

24、matrices changing basis

25、orthogonal matrices

18、圖解線性代數:我的視野里的vector, basis vector在panda的視野里長得什麼樣子 19、圖解線性代數:案例熊貓與人類的視野轉換 20、圖解線性代數:如何理解orthogonal matrix

26、the Gram Smchidt process

21、圖解線性代數:gram-schmidt與轉換坐標空間來實現vector變形

27、Example reflecting in a plane

28、welcome to module 5

29、what are eigenvalues and eigenvectors

30、special eigen cases

31、calculating eigenvectors

32、changing to eigenbasis

33、eigenbasis example

22、圖解線性代數:eigenvectors and eigenvalues 23、圖解線性代數:eigenvectors and eigenvalues的求解邏輯 24、圖解線性代數:用eigenvector, eigenvalues化簡n個m

34、pagerank

35、wrap up

36、summary


Multivariate Calculus for Machine Learning

37、welcome to multivariate calculus

38、welcome to module 1

39、functions

40、rise over run

41、definition of a derivative

42、differentiation examples and special cases

43、product rule

44、chain rule

45、taming a best

46、see you next module

47、welcome to Module 2

48、variables, constants and context

49、differentiate with respect to anything

50、the jacobian

51、Jacobian applied

52、the sandpit

53、the hessian

54、reality is hard

55、see you next module

56、welcome to module 3

57、multivariate chain rule

58、more multivariate chain rule

59、simple neural networks

60、more simple neural networks

61、see you next module

62、welcome to module 4

63、building approximate functions

64、power series

65、power series derivation

66、power series details

67、examples

68、linearisation

69、multivariate taylor

70、see you next module

71、welcome to module 5

72、gradient descent

73、constrained optimization

74、see you next module

75、simple linear regression

76、general non linear least squares

77、doing least squares regression analysis in practice

78、wrap up of this course


推薦閱讀:

[PRML學習筆記] CHA 4 Linear Models for Classification
機器學習入門之邏輯回歸分類
基於信息瓶頸的空間聚類(一)
《機器學習實戰》學習總結(十一)——隱馬爾可夫模型(HMM)
機器學習-各種 Learning 概念簡明介紹

TAG:高等數學 | 機器學習 | 深度學習DeepLearning |