標籤:

Field theory

下午走錯教室了,懶得換了,就聽了一節。

1.Z[J]=int D[psi]s^{-S[psi]+<f,psi>}

for free theory

=Nexp(frac{1}{2}<J,frac{1}{-partial^2+m^2}J>)

=N(1+frac{1}{2}<G(1,2)j(1)j(2)>_{1,2}+...+frac{1}{N!}<G(1,...,N)J(1)...J(N)>_{1,2,...,N}+...

where

<G(1,...,N)J(1)...J(N)>_{1,2,...,N}=int dx_1dx_2...dx_nG(x_1,...,x_n)J(x_1)...J(x_n)

this is the Taylor expansion.we use this to define G(x,y) although we know G is the green function.

f(x)=sum_{n=0}^{infty}frac{x^n}{n!}f^{(n)}(0)

G(1,...,N)=frac{1}{N}frac{delta^n Z[J]}{delta J(1)...J(N)}|^{J=0}=<psi(1)...psi(N))>

G(1,2)=Delta_F(1,2)

Z[J]/N=1+frac{1}{2}<JDelta_F J>+frac{1}{8}<JDelta_F J>^2+frac{1}{48}<JDelta_F J>^3+...

2.

G(1,2,3,4)=frac{1}{8}(Delta_F(1,2)Delta_F(3,4)+Delta_F(1,3)Delta_F(2,4)+Delta_F(1,4)Delta_F(2,3))

idea is:

J longleftrightarrow J

J longleftrightarrow J

to

4 1 longleftrightarrow J

J longleftrightarrow J

to or

4 1 longleftrightarrow 2 4*2 1 longleftrightarrow J

J longleftrightarrow J2longleftrightarrow J

to or or

4*21 longleftrightarrow 2 4*21 longleftrightarrow 3 4*2 1 longleftrightarrow J

3 longleftrightarrow J2 longleftrightarrow J2 longleftrightarrow 3

now calculate the third term:

it seems the third term is also equedistribution.

3.

so it appears that G_N=1,2,...,N with Delta_F connecting pairs of them and summed together Rule each point is on exactly one propagator.

4.

Z[J]/N=exp(frac{1}{2}Jlongleftrightarrow J)=1+frac{1}{2}(Jlongleftrightarrow J)+(frac{1}{2})^2frac{1}{2}(Jlongleftrightarrow J)^2+...

N-th terms 2N-th order in J with coefficient frac{2^{-N}}{N!}.

consider arbitrary

exp()=1+()+frac{()()}{2}+...+frac{()()...()}{N!}+...

then ln Z=()

5.

take another look at Z[J]

it looks like Fourier-Laplace transform of e^{-S[psi]}

take S[psi]=frac{1}{2}<psi M psi>.

Z[J]=int D[psi]exp(-frac{1}{2}<psi Mpsi>+<Jpsi>)

=int D[psi]exp(-frac{1}{2}<psi^` M psi^`>+<JM^{-1}J>)

=N exp(<JM^{-1}J>/2),N=Z[0]

psi^`=psi-M^{-1}Jmeans psi^`(1)=psi(1)-M^{-1}(1,2)J(2).

M M^{-1}=1M[z]=ln z=frac{1}{2}<JM^{-1}J>+constant

Recall in C,M ,L=frac{mx^2}{2},Longrightarrow H=frac{p^2}{2m}

Legendre transform,Do it for S[psi].

Def J(1)=frac{delta S}{delta psi(1)},use J as the new variable.

Def T[J]=<Tpsi>-S

Example:

S=frac{1}{2}<psi Mpsi>

Longrightarrow J=Mpsi Longrightarrow psi=M^{-1}J

T[J]=<JM^{-1}J>-frac{1}{2}<JM^{-1}J>=frac{JM^{-1}J}{2}.

we differ from T by a constant because S is a free theory.

because S is a free theory,constant here represents vacuum.

6.

Z[J]=int D[psi]e^{-S[psi]+<J,psi>}

S_J[psi]=S[psi]-<J,psi>

classical E M

0=frac{delta S_J[psi]}{delta psi}=frac{delta S}{delta psi}-J.

so J=frac{delta S}{delta psi} is simply the Ecirc M of S_{J}[psi].

therefore legendre transform is simply classical physics.just like the path integral/partition is quantum.

Gamma:Quantum effective action.

7.

This lead to a natural question:

can the quantum W[J]=lnZ[J] be the legendre transform of a Gamma[psi]

then quantum W[J] can be "understand" as coming an effective "classical"-looking act Gamma[psi].then Gamma[psi] treated as classical,captures the information the quantized theory of S[psi].

推薦閱讀:

急救醫生為防止意外事故,是否有必要每人配置一個望遠鏡?
科學家為什麼能算出行星或恆星的溫度?
《最強大腦》第四季,王昱珩為什麼會輸?

TAG:物理學 |