寫好一份數據分析報告的13個要點
- 2017年關於數據科學的六大預言
- 商業智能 BI 未來發展的新趨勢
- 十張圖看懂未來的大數據世界
- 常用的數據可視化圖表錦集
- 2017 最全的機器學習開源項目列表
一份好的分析報告,有以下一些要點:
首先,要有一個好的框架,跟蓋房子一樣,好的分析肯定是有基礎有層次,有基礎堅實,並且層次明了才能讓閱讀者一目了然,架構清晰、主次分明才能讓別人容易讀懂,這樣才讓人有讀下去的慾望;
第二,每個分析都有結論,而且結論一定要明確,如果沒有明確的結論那分析就不叫分析了,也失去了他本身的意義,因為你本來就是要去尋找或者印證一個結論才會去做分析的,所以千萬不要忘本舍果;
第三,分析結論不要太多要精,如果可以的話一個分析一個最重要的結論就好了,很多時候分析就是發現問題,如果一個一個分析能發現一個重大問題,就達到目的 了,不要事事求多,寧要仙桃一口,不要爛杏一筐,精簡的結論也容易讓閱者接受,減少重要閱者(通常是事務繁多的領導,沒有太多時間看那麼多)的閱讀心理門檻,如果別人看到問題太多,結論太繁,不讀下去,一百個結論也等於0;
第四、分析結論一定要基於緊密嚴禁的數據分析推導過程,不要有猜測性的結論,太主觀的東西會沒有說服力,如果一個結論連你自己都沒有肯定的把握就不要拿出來誤導別人了;
第五,好的分析要有很強的可讀性,這裡是指易讀度,每個人都有自己的閱讀習慣和思維方式,寫東西你總會按照自己的思維邏輯來寫,你自己覺得很明白,那是因 為整個分析過程是你做的,別人不一定如此了解,要知道閱者往往只會花10分鐘以內的時間來閱讀,所以要考慮你的分析閱讀者是誰?他們最關心什麼?你必須站 在讀者的角度去寫分析郵件;
第六,數據分析報告盡量圖表化,這其實是第四點的補充,用圖表代替大量堆砌的數字會有助於人們更形象更直觀地看清楚問題和結論,當然,圖表也不要太多,過多的圖表一樣會讓人無所適從;
第七、好的分析報告一定要有邏輯性,通常要遵照:1、發現問題--2、總結問題原因--3、解決問題,這樣一個流程,邏輯性強的分析報告也容易讓人接受;
第八、好的分析一定是出自於了解產品的基礎上的,做數據分析的產品經理本身一定要非常了解你所分析的產品的,如果你連分析的對象基本特性都不了解,分析出來的結論肯定是空中樓閣了,無根之木如何叫人信服?!
第九、好的分析一定要基於可靠的數據源,其實很多時候收集數據會佔據更多的時間,包括規劃定義數據、協調數據上報、讓開發人員 提取正確的數據或者建立良好的數據體系平台,最後才在收集的正確數據基礎上做分析,既然一切都是為了找到正確的結論,那麼就要保證收集到的數據的正確性, 否則一切都將變成為了誤導別人的努力;
第十、好的分析報告一定要有解決方案和建議方案,你既然很努力地去了解了產品並在了解的基礎上做了深入的分析,那麼這個過程就決定了你可能比別人都更清楚 第發現了問題及問題產生的原因,那麼在這個基礎之上基於你的知識和了解,做出的建議和結論想必也會更有意義,而且你的老闆也肯定不希望你只是個會發現問題 的人,請你的那份工資更多的是為了讓你解決問題的;
十一、不要害怕或迴避「不良結論」,分析就是為了發現問題,並為解決問題提供決策依據的,發現產品問題也是你的價值所在,相信你的老闆請你來,不是光讓你 來唱讚歌的,他要的也不是一個粉飾太平的工具,發現產品問題,在產品缺陷和問題造成重大失誤前解決它就是你的分析的價值所在了;
十二、不要創造太多難懂的名詞,如果你的老闆在看你的分析花10分鐘要叫你三次過去來解釋名詞,那麼你寫出來的價值又在哪裡呢,還不如你直接過去說算了,當然如果無可避免地要寫一些名詞,最好要有讓人易懂的「名詞解釋」;
十三、最後,要感謝那些為你的這份分析報告付出努力做出貢獻的人,包括那些為你上報或提取數據的人,那些為產品作出支 持和幫助的人(如果分析的是你自己負責的產品),肯定和尊重夥伴們的工作才會贏得更多的支持和幫助,而且我想你也不是只做一鎚子買賣,懂得感謝和分享成果 的人才能成為一個有素養和受人尊敬的產品經理。
推薦閱讀: