智能手機中的三大AI晶元的區別及應用詳解

作為手機界的新生事物,目前搭載人工智慧晶元的手機並不多見,僅有iPhone X、華為Mate 10/V10、Google Pixel

2等寥寥幾款產品。其中,iPhone X和華為Mate 10系列內置的人工智慧晶元是封裝在處理器中的,而Pixel 2系列則是外掛了Pixel

Visual Core這顆人工智慧晶元。雖然實現方式上各有千秋,但它們都有一個共同的名字「人工智慧智能晶元」。

這三款手機人工智慧晶元有什麼區別呢?我們先通過一張對比表格簡單了解一下。

從上面對比表格可以看出,相對於已有行業巨頭的CPU,AI晶元領域目前尚未有統一的架構,既有寒武紀的NFU,也有Google的IPU,各不相同,具體核心規格上差異也十分之大。三大AI晶元具體有哪些應用呢?下面我們逐一來盤點盤點。

麒麟970中的NPU:寒武紀A1

華為海思麒麟970處理器中的人工智慧晶元來自於初創公司寒武紀,這家成立於2016年的人工智慧領域獨角獸企業在短短的時間內已經推出了多款智能晶元產品,麒麟970中的NPU正是出自它家的寒武紀A1處理器(Cambricon-1A),這顆發佈於2016年的人工智慧晶元是全球首款商用的深度學習專用處理器,官方稱其在運行主流智能演算法時性能功耗比全面超越CPU和GPU。

從參數上看,寒武紀A1的浮點性能可達1.9T,即每秒鐘可以完成1.9萬億次運算,性能著實強悍,然而這顆性能強大的NPU在華為手機上似乎有些「浪費」,未能完全釋放其卓越的性能。那麼,華為利用這顆NPU開發了什麼功能呢?

在華為Mate 10系列的發布會上,華為就麒麟970的圖片識別速度與競爭對手A11 Bionic、驍龍835進行了對比,結果是NPU加持下的麒麟970速度略快於A11,遠超驍龍835二十倍。由此可見,華為對於這顆晶元的開發方向是圖片識別。

華為挖掘NPU的第一個功能即是「AI慧眼識物」和「AI精準虛化」。「AI慧眼識物」即指智能識別十餘種拍照場景,自動調校拍照參數,獲得更佳的拍攝效果;「AI精準虛化」即通過晶元的自主學習,更加精準摳圖,使得虛化效果更真實自然。

第二個功能即是「隨行翻譯」。華為選擇與微軟翻譯合作,通過AI晶元,加速文本、語音、照片的翻譯速度,提供更加優秀的用戶體驗。

目前為止,華為對於這顆NPU的打磨仍然停留在文字、語音、圖片識別階段,僅僅把這顆AI晶元作為輔助性工具,尚未有深層次的開發應用。不過,小編相信,隨著行業趨勢的逐漸明確和打磨的逐步深入,這顆NPU將可能在未來大放異彩,開啟更多的新玩法。

Pixel 2中的Pixel Visual Core

在國外專業相機評測機構DxOMark手機相機排行榜中,Google Pixel

2以總分98分的高分獨佔鰲頭,而這還是在Google尚未開啟內置的Pixel Visual

Core(簡稱:PVC)晶元時得出的結果。在最新的Android 8.1固件中,Pixel

2系列已經開啟了這顆PVC晶元,主要用於Google的HDR+演算法。

Google博客公布的Pixel Visual Core結構圖顯示,這顆晶元內部集成了8個圖像處理核心(Image Processing

Unit,簡稱:IPU),一顆來自ARM的A53核心,同時還擁有MIPI/LPDDR4/PCIe控制器。得益於八個IPU核心,PVC晶元可以提供高達3T的浮點性能。作為對比,麒麟970內置的寒武紀A1浮點性能為1.9T,而蘋果A11中的仿生晶元則為0.6T,Google這顆PVC晶元性能的恐怖程度可想而知。

Pixel Visual Core結構圖

Google開發Pixel Visual Core的目的是將其當做一個超強、可學習的ISP使用,可以用於加速HDR+演算法的運算速度。通過軟硬體的結合,Pixel Visual Core加持下的HDR+成像速度比原來快上5倍,而功耗卻僅為原來十分之一。

不開啟PVC與開啟PVC成像對比

那麼,蘋果利用這顆人工智慧晶元發掘了什麼功能呢?

首先自然是iPhone X上獨一無二的Face ID。Face

ID功能是通過原深感攝像頭來實現,其會投射超過30000個肉眼不可見的光點,並對它們進行分析,繪製出精確細緻的深度圖。蘋果宣稱,即便你戴著帽子,留起鬍鬚,或者佩戴眼鏡,甚至是不同款式的墨鏡,Face

ID同樣能夠認出你。而完成這寫自主學習的背後就是A11 Bionic內置的神經網路引擎,利用先進的機器學習識別用戶樣貌的變化。

其次,與Google、華為一樣,蘋果也將神經網路引擎運用於手機相機成像中。由於原深感攝像頭和仿生晶元的加持,iPhone X上前置單攝也能夠實現雙攝的背景虛化功能,同時還能實現人像光效模式和Animoji動畫表情。

註:我們的編輯先前發現,Animoji不需要原深感攝像頭參與也能實現

最後是增強現實(AR)功能的實現。A11 Bionic上的神經網路引擎的又一個重要應用點就是AR,通過強大的性能和自主學習處理能力,可以增強增強現實類遊戲和APP的流暢度和真實感。

國內尚未上線的AR遊戲

毫無疑問,在目前搭載人工智慧晶元的手機產品中,蘋果是最善於利用所搭載的AI晶元的,在浮點性能遠不及對手的情況下卻將其應用地更加廣泛,涵蓋Face

ID、相機成像、AR等各方面,通過自主學習提升性能,起到加速硬體的作用。作為手機行業的領軍企業,蘋果下一步如何利用AI晶元也是業界乃至廣大用戶們所共同期待的。

當然,不得不承認的是,目前為止,上述三大廠商利用手機中人工智慧晶元開發的功能通過傳統的CPU和GPU都能夠實現,那麼,人工智慧晶元的優勢在於哪裡呢?子曰:「術業有專攻,如是而已。」如今大多數手機CPU和GPU的性能已經足夠扛大樑,實現上述的大部分功能,但其與人工智慧晶元相比,能效比遠不如後者,也就是說,人工智慧晶元能夠以更快的速度、更低的功耗完成運算。

內置AI晶元的手機雖然誕生於2017年的後半段,但其真正普及或許要等到2018年高通、聯發科等晶元大廠推出相關的產品或解決方案時才能實現,畢竟如同Google般單獨或聯合晶元廠商開發自用的AI晶元的高昂成本是一般手機廠商所無法或不願意承擔的。因此,當內置AI晶元的手機百花齊放之時,或許才是人工智慧手機盛放的季節。

相關內容:

AI晶元,將引發「智聯網」大變革

物聯網晶元大盤點:產業規模及全球晶元供應商一覽

這些國內廠商正在深耕物聯網晶元市場

無AI,不安防!全球AI晶元創新峰會共話安防未來

如果你有任何不同見解或意見,歡迎你留言討論。

--------------------------------

晶元供應,歡迎關註:

知乎: @英唐眾創晶元

方案:眾創方案商城


推薦閱讀:

光子晶元橫空出世,28 歲 MIT 中國青年科學家直取 AI 算力霸業!AI 晶元賽局勝負未定 | 獨家
國內AI晶元百家爭鳴,何以抗衡全球技術寡頭
ARM發布了兩款AI晶元設計,為機器學習而生
人工智慧晶元魚和熊掌終極難題 被清華大學IC男神解決了!
神經網路加速器NVDLA頂層介面與工作流程

TAG:AI晶元 | 晶元集成電路 | 智能手機 |