標籤:

微積分常用公式總結(一)

高等數學基礎

函數


  • u^v = e^{lnu^v} = e^{vlnu}
  • y=tanx

  • y=cotx

  • y=secx=1/cosx

  • y=cscx=1/sinx

  • y=arcsinx

  • y=arccosx

  • y=arctanx

  • y=arccotx

數列


  • 等差數列: a_n=a_1+(n-1)d S_n = n[2a_1+(n-1)d]/2
  • 等比數列: a_n = a_1r^{n-1} S_n=a_1(1-r^n)/(1-r)
  • sum_{k=1}^{n}{k} = n(n+1)/2
  • sum_{k=1}^{n}{(2k-1)} = n^2
  • sum_{k=1}^{n}{k^2} = n(n+1)(2n+1)/6
  • sum_{k=1}^{n}{k^3}=(sum_{k=1}^{n}{k})^2
  • sum_{k=1}^{n}{k(k+1)} = n(n+1)(n+2)/3
  • sum_{k=1}^{n}{1/[k(k+1)]}=n/(n+1)

三角函數


  • sin^2alpha + cos^2alpha = 1 sec^2alpha - tan^2alpha = 1 csc^2alpha - cot^2alpha = 1
  • sin2alpha = 2sinalpha cosalpha cos2alpha = 2cos^2alpha - 1 = 1 - sin^2alpha = cos^2alpha - sin^2alpha
  • sin3alpha = -4sin^3alpha + 3sinalpha cos3alpha = 4cos^3alpha-3cosalpha
  • sin^2alpha = (1-cos2alpha)/2 cos^2alpha = (1+cos2alpha)/2
  • tan2alpha = 2tanalpha/(1-tan^2alpha) cos2alpha = (cot^2alpha-1)/2cotalpha
  • tanalpha/2=(1-cosalpha)/sinalpha = sinalpha/(1+cosalpha) cotalpha/2 = sinalpha/(1-cosalpha)=(1+cosalpha)/sinalpha
  • sin(alpha+-eta)=sinalpha coseta+-cosalpha sineta cos(alpha+-eta)=cosalpha coseta-+sinalpha sineta tan(alpha+-eta)=(tanalpha+-taneta)/(1-+tanalpha taneta) cot(alpha+-eta)=(cotalpha coteta-+1)/(coteta+-cotalpha)
  • sinalpha coseta = [sin(alpha+eta)+sin(alpha-eta)]/2 cosalpha coseta = [cos(alpha+eta)+cos(alpha-eta)]/2 sinalpha sineta = [cos(alpha-eta)-cos(alpha+eta)]/2
  • sinalpha+sineta = 2sin[(alpha+eta)/2]cos[(alpha-eta)/2] sinalpha-sineta=2sin[(alpha-eta)/2]cos[(alpha+eta)/2] cosalpha+coseta=2cos[(alpha+eta)/2]cos[(alpha-eta)/2] cosalpha-coseta=-2sin[(alpha+eta)/2]sin[(alpha-eta)/2]

階乘


  • (2n)!!=2^nn!
  • (2n-1)!!=1	imes3	imes5	imescdotcdotcdot	imes(2n-1)

推薦閱讀:

積分習題及詳解16
導數
關於f』(g(x))與[f(g(x)]』的區別 ——f(x+1/x)=x^2+1/x^2
極坐標系

TAG:微積分 |