[TED] 聽Kaggle創始人講講這些年會被機器"搶"走的工作
Lessons Learned
人工智慧的發展會威脅到人類嗎?
在工作領域而言,答案看起來是的。2013年牛津大學的研究者們得出結論:每兩份工作中幾乎就有一份有很高的風險會被機器自動化取代。人工智慧最有影響力的分支--機器學習領域的前沿工作者,Kaggle公司創始人,Anthony Goldbloom 分享了他的觀點:
- 機器的優勢領域:頻繁性的、大規模的任務量 ->此優勢需要通過學習大量已有的、正確的數據作為保障
- 機器的不足:創造性的、新穎的方面
因此對於未來的工作而言,人類是否可能被威脅/取代取決於一個簡單的問題:這份工作繁雜反覆的比重佔多少,需要發揮創造力的部分又佔多少?
The future state of any single job lies in the answer to a single question: To what extent is that job reducible to frequent, high-volume tasks, and to what extent does it involve tackling novel situations?
-- Anthony Goldbloom
Anthony認為,機器學習發展之勢迅猛。從最初只用來簡單的評估貸款申請風險、分類信件郵編,到如今Kaggle上已經成功地發展出了高中作文評分、糖尿病患者視網膜病變診斷的演算法,而未來機器可能用於會計審計、閱讀法律合同模板方面[作者有話要說:前兩天跟PwC Assurance Innovation團隊聊了一下,他們現在已經在很大程度地自動化審計流程,這個未來已經在發生了...],但會計師和律師仍需要負責複雜的稅務和沒有先例的訴訟等。
總之,
Whatever you decide to do, let every day bring you a new challenge.
Vocabulary Builder
- disruption: n. disturbance or problems that interrupt an event, activity or process -> 造成了困擾
e.g. They concluded that almost one in every two jobs have a high risk of being automated by machines. Machine Learning is the technology thats responsible for most of this disruption.
- give sb a (unique) perspective on sth ->告訴/啟示了某人某事
e.g. This gives us a unique perspective on what machines can do, what they cant do and what jobs they might automate or threaten.
- make dramatic breakthroughs 取得重大突破
e.g. Machine learning started making its way into industry in the early 90s... Over the past few years, we have made dramatic breakthroughs.
- have no chance of competing against sb on sth -> 在某方面跟某人比毫無勝算,在某方面被某人碾壓
e.g. We have no chance of competing against machines on frequent, high-volume tasks.
- disparate: adj. = different
e.g. We have the ability to connect seemingly disparate threads to solve problems weve never seen before.
- boilerplate: n. rolled steel for making boilers -> 樣板
e.g. Over the coming years, theyre going to conduct our audits, and theyre going to read boilerplate from legal contracts.
- pathbreaking: adj. = innovative, pioneering ->破天荒的
e.g. Theyre going to be needed for complex tax structuring, for pathbreaking litigation.
Reference
- TED: The jobs well lose to machines - and the ones we wont by Anthony Goldbloom
- 演講細節尋幽:
- 論文 - The Future of Employment: How Susceptible are Jobs to Computerisation? by Carl Benedikt Frey, Michael A. Osborne
- New York Times - The Algorithm Didn』t Like My Essay by Randall Stross
- The Economist - Now there』s an app for that
- 拓展閱讀文章:The Economist - The return of the machinery question
- 演講人推薦書目[Book recommended by Anthony Goldbloom]:
- The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World by Pedro Domingos
- The Second Machine Age by Erik Brynjolfsson and Andrew McAfee
標題背景Photo by Markus Spiske on Unsplash
aLittleBit on 2018/02/25
推薦閱讀:
※Python決策樹模型做 Titanic數據集預測並可視化(一)
※Zillow Prize競賽系列--(一)競賽簡介
※kaggle首戰,踩坑?學習?
※Kaggle入門系列:(一)機器學習環境搭建
※KAGGLE TITANIC生還率預測——機器學習