Relation Extraction: Perspective from Convolutional Neural Networks
03-02
模型由4部分組成,就是經典的embedding,conv,pooling,fc
(i) the look-up tables to encode words in sentences by real-valued
vectors,(ii) the convolutional layer to recognize n-grams,
(iii) the pooling layer to determine the most relevant features and(iv) a logistic regression layer (a fully connected neural network with a softmax at
the end) to perform classificationCNN輸入:the word embeddings e_i and the position embeddings d_i_1 and d_i_2 are concatenated into a single vector x_i = [e_i, d_i_1, d_i_2],再拼成一整句
CNN輸出:is a vector, the dimension of which is equal to the number of predefined relation types. The value of each dimension is the confidence score of the corresponding relation.
數據示例:
推薦閱讀:
※python學習之文章數據分析
※SQLnet 代碼閱讀筆記
※學習筆記CB002:詞幹提取、詞性標註、中文切詞、文檔分類
※tf.nn.nce_loss 來自一篇古老的文章
※機器學習中的數學基礎(簡介)
TAG:自然語言處理 |