Relation Extraction: Perspective from Convolutional Neural Networks

模型由4部分組成,就是經典的embedding,conv,pooling,fc

(i) the look-up tables to encode words in sentences by real-valued

vectors,

(ii) the convolutional layer to recognize n-grams,

(iii) the pooling layer to determine the most relevant features and

(iv) a logistic regression layer (a fully connected neural network with a softmax at

the end) to perform classification

CNN輸入:the word embeddings e_i and the position embeddings d_i_1 and d_i_2 are concatenated into a single vector x_i = [e_i, d_i_1, d_i_2],再拼成一整句

CNN輸出:is a vector, the dimension of which is equal to the number of predefined relation types. The value of each dimension is the confidence score of the corresponding relation.

數據示例:

推薦閱讀:

python學習之文章數據分析
SQLnet 代碼閱讀筆記
學習筆記CB002:詞幹提取、詞性標註、中文切詞、文檔分類
tf.nn.nce_loss 來自一篇古老的文章
機器學習中的數學基礎(簡介)

TAG:自然語言處理 |