七層網路協議--tcp/ip協議

前言

早在N年前,就接觸過七層網路協議,那時候粗略的學習過,沒有很用力;最近又重新拾起來,仔細的學習一下七層網路協議,以及TCP/IP協議;下面,將本人的理解整理如下:

一、七層網路協議:

這裡的簡略的介紹下七層相關:

1、第一層物理層:規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械 特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率 距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組 操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。在這一層,數據的單位稱為比特(bit)。屬於物理層定義的典型規範代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

2、第二層:數據鏈路層:在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。

3、第三層網路層:在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。如 果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地 址解析協議(ARP)。有關路由的一切事情都在這第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據的單位稱為數據包(packet)。網路層協議的代表包括:IP、IPX、RIP、OSPF等。

4、第四層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段 (segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的 數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中 傳輸層對上層屏蔽了通信傳輸系統的具體細節。傳輸層協議的代表包括:TCP、UDP、SPX等。

5、第五層是會話層這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,而是統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。

6、第六層是表示層 這一層主要解決擁護信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。

7、第七層應用層 應用層為操作系統或網路應用程序提供訪問網路服務的介面。應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。

以上,如下圖示:

二、TCP/IP

1、TCP:

TCP(Transmission Control Protocol 傳輸控制協議)是一種面向連接的、可靠的、基於位元組流的傳輸層通信協議。

具體的關於TCP是什麼,我不打算詳細的說了;當你看到這篇文章時,我想你也知道TCP的概念了,想要更深入的了解TCP的工作,我們就繼續。它只是一個超級麻煩的協議,而它又是互聯網的基礎.

我們需要知道TCP工作在網路OSI的七層模型中的第四層——Transport層,IP在第三層——Network層,ARP在第二層——Data Link層;在第二層上的數據,我們把它叫Frame,在第三層上的數據叫Packet,第四層的數據叫Segment。 同時,我們需要簡單的知道,數據從應用層發下來,會在每一層都會加上頭部信息,進行封裝,然後再發送到數據接收端。這個基本的流程你需要知道,就是每個數據都會經過數據的封裝和解封裝的過程。

上面就是TCP協議頭部的格式,由於它太重要了,是理解其它內容的基礎,下面就將每個欄位的信息都詳細的說明一下。

Source Port和Destination Port:分別佔用16位,表示源埠號和目的埠號;用於區別主機中的不同進程,而IP地址是用來區分不同的主機的,源埠號和目的埠號配合上IP首部中的源IP地址和目的IP地址就能唯一的確定一個TCP連接;

Sequence Number:用來標識從TCP發端向TCP收端發送的數據位元組流,它表示在這個報文段中的的第一個數據位元組在數據流中的序號;主要用來解決網路報亂序的問題;

Acknowledgment Number:32位確認序列號包含發送確認的一端所期望收到的下一個序號,因此,確認序號應當是上次已成功收到數據位元組序號加1。不過,只有當標誌位中的ACK標誌(下面介紹)為1時該確認序列號的欄位才有效。主要用來解決不丟包的問題;

Offset:給出首部中32 bit字的數目,需要這個值是因為任選欄位的長度是可變的。這個欄位佔4bit(最多能表示15個32bit的的字,即4*15=60個位元組的首部長度),因此TCP最多有60位元組的首部。然而,沒有任選欄位,正常的長度是20位元組;

TCP Flags:TCP首部中有6個標誌比特,它們中的多個可同時被設置為1,主要是用於操控TCP的狀態機的,依次為URG,ACK,PSH,RST,SYN,FIN。

說到這裡,就不得不提到一個重點又是難點的問題:三次握手

上圖:

很清晰的圖示,呵呵,但不是我畫的,我引用下;

第一次握手:建立連接。客戶端發送連接請求報文段,將SYN位置為1,Sequence Number為x;然後,客戶端進入SYN_SEND狀態,等待伺服器的確認;

第二次握手:伺服器收到SYN報文段。伺服器收到客戶端的SYN報文段,需要對這個SYN報文段進行確認,設置Acknowledgment Number為x+1(Sequence Number+1);同時,自己自己還要發送SYN請求信息,將SYN位置為1,Sequence Number為y;伺服器端將上述所有信息放到一個報文段(即SYN+ACK報文段)中,一併發送給客戶端,此時伺服器進入SYN_RECV狀態;

第三次握手:客戶端收到伺服器的SYN+ACK報文段。然後將Acknowledgment Number設置為y+1,向伺服器發送ACK報文段,這個報文段發送完畢以後,客戶端和伺服器端都進入ESTABLISHED狀態,完成TCP三次握手。 完成了三次握手,客戶端和伺服器端就可以開始傳送數據。以上就是TCP三次握手的總體介紹;

那四次分手呢?

當客戶端和伺服器通過三次握手建立了TCP連接以後,當數據傳送完畢,肯定是要斷開TCP連接的啊。那對於TCP的斷開連接,這裡就有了神秘的「四次分手」。

第一次分手:主機1(可以使客戶端,也可以是伺服器端),設置Sequence Number和Acknowledgment Number,向主機2發送一個FIN報文段;此時,主機1進入FIN_WAIT_1狀態;這表示主機1沒有數據要發送給主機2了;

第二次分手:主機2收到了主機1發送的FIN報文段,向主機1回一個ACK報文段,Acknowledgment Number為Sequence Number加1;主機1進入FIN_WAIT_2狀態;主機2告訴主機1,我「同意」你的關閉請求;

第三次分手:主機2向主機1發送FIN報文段,請求關閉連接,同時主機2進入LAST_ACK狀態;

第四次分手:主機1收到主機2發送的FIN報文段,向主機2發送ACK報文段,然後主機1進入TIME_WAIT狀態;主機2收到主機1的ACK報文段以後,就關閉連接;此時,主機1等待2MSL後依然沒有收到回復,則證明Server端已正常關閉,那好,主機1也可以關閉連接了。

至此,TCP的四次分手就這麼愉快的完成了。當你看到這裡,你的腦子裡會有很多的疑問,很多的不懂,感覺很凌亂。

為何要四次分手呢?

為什麼要四次分手

那四次分手又是為何呢?TCP協議是一種面向連接的、可靠的、基於位元組流的運輸層通信協議。TCP是全雙工模式,這就意味著,當主機1發出FIN報文段時,只是表示主機1已經沒有數據要發送了,主機1告訴主機2,它的數據已經全部發送完畢了;但是,這個時候主機1還是可以接受來自主機2的數據;當主機2返回ACK報文段時,表示它已經知道主機1沒有數據發送了,但是主機2還是可以發送數據到主機1的;當主機2也發送了FIN報文段時,這個時候就表示主機2也沒有數據要發送了,就會告訴主機1,我也沒有數據要發送了,之後彼此就會愉快的中斷這次TCP連接。如果要正確的理解四次分手的原理,就需要了解四次分手過程中的狀態變化。

FIN_WAIT_1: 這個狀態要好好解釋一下,其實FIN_WAIT_1和FIN_WAIT_2狀態的真正含義都是表示等待對方的FIN報文。而這兩種狀態的區別是:FIN_WAIT_1狀態實際上是當SOCKET在ESTABLISHED狀態時,它想主動關閉連接,向對方發送了FIN報文,此時該SOCKET即進入到FIN_WAIT_1狀態。而當對方回應ACK報文後,則進入到FIN_WAIT_2狀態,當然在實際的正常情況下,無論對方何種情況下,都應該馬上回應ACK報文,所以FIN_WAIT_1狀態一般是比較難見到的,而FIN_WAIT_2狀態還有時常常可以用netstat看到。(主動方)

FIN_WAIT_2:上面已經詳細解釋了這種狀態,實際上FIN_WAIT_2狀態下的SOCKET,表示半連接,也即有一方要求close連接,但另外還告訴對方,我暫時還有點數據需要傳送給你(ACK信息),稍後再關閉連接。(主動方)

CLOSE_WAIT:這種狀態的含義其實是表示在等待關閉。怎麼理解呢?當對方close一個SOCKET後發送FIN報文給自己,你系統毫無疑問地會回應一個ACK報文給對方,此時則進入到CLOSE_WAIT狀態。接下來呢,實際上你真正需要考慮的事情是察看你是否還有數據發送給對方,如果沒有的話,那麼你也就可以 close這個SOCKET,發送FIN報文給對方,也即關閉連接。所以你在CLOSE_WAIT狀態下,需要完成的事情是等待你去關閉連接。(被動方)

LAST_ACK: 這個狀態還是比較容易好理解的,它是被動關閉一方在發送FIN報文後,最後等待對方的ACK報文。當收到ACK報文後,也即可以進入到CLOSED可用狀態了。(被動方)

TIME_WAIT: 表示收到了對方的FIN報文,並發送出了ACK報文,就等2MSL後即可回到CLOSED可用狀態了。如果FINWAIT1狀態下,收到了對方同時帶FIN標誌和ACK標誌的報文時,可以直接進入到TIME_WAIT狀態,而無須經過FIN_WAIT_2狀態。(主動方)

CLOSED: 表示連接中斷

實例如下:

IP 192.168.1.116.3337 > 192.168.1.123.7788: S 3626544836:3626544836 IP 192.168.1.123.7788 > 192.168.1.116.3337: S 1739326486:1739326486 ack 3626544837 IP 192.168.1.116.3337 > 192.168.1.123.7788: ack 1739326487,ack 1

第一次握手:192.168.1.116發送位碼syn=1,隨機產生seq number=3626544836的數據包到192.168.1.123,192.168.1.123由SYN=1知道192.168.1.116要求建立聯機;

第二次握手:192.168.1.123收到請求後要確認聯機信息,向192.168.1.116發送ack number=3626544837,syn=1,ack=1,隨機產生seq=1739326486的包;

第三次握手:192.168.1.116收到後檢查ack number是否正確,即第一次發送的seq number+1,以及位碼ack是否為1,若正確,192.168.1.116會再發送ack number=1739326487,ack=1,192.168.1.123收到後確認seq=seq+1,ack=1則連接建立成功。

最後

關於TCP/IP的東西,很多,有一定的難度,這裡只是通俗的做一個整理,更加詳細的內容,需要我們更進一步的學習和總結;


推薦閱讀:

nodejs的回調函數里為什麼需要return?
為什麼nodejs的module.js里用了readFileSync而不用readFile?
Node.js 發展前景如何?適用於哪些場景?
前端小白迷茫,求指導?
Promise then中回調為什麼是非同步執行?

TAG:前端開發 | Nodejs |