積分習題及詳解13

412.

[egin{gathered}  int {arctan x{kern 1pt} {	ext{d}}x}  hfill \  u = arctan x,v = 1, hfill \  u = frac{1}{{{x^2} + 1}},v = x, hfill \   = xarctan x - int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = xarctan x - frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  hfill \   = xarctan x - frac{{ln u}}{2} hfill \   = xarctan x - frac{{ln left( {{x^2} + 1} 
ight)}}{2} + C hfill \  intlimits_0^1 {arctan } x{kern 1pt} {	ext{d}}x =  - frac{{2ln 2 - pi }}{4} hfill \ end{gathered} ]

413.

[egin{gathered}  int {frac{{sqrt {{x^2} - 1} }}{{{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} - 1} ,v = frac{1}{{{x^2}}}, hfill \  u = frac{x}{{sqrt {{x^2} - 1} }},v =  - frac{1}{x}, hfill \   =  - int { - frac{1}{{sqrt {{x^2} - 1} }}{kern 1pt} {	ext{d}}x}  - frac{{sqrt {{x^2} - 1} }}{x} hfill \  x = sec u,u = operatorname{arc} sec x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = sec u	an u, hfill \   = int {frac{{sec u	an u}}{{sqrt {{{sec }^2}u - 1} }}{kern 1pt} {	ext{d}}u}  - frac{{sqrt {{x^2} - 1} }}{x} hfill \   = int {sec u{kern 1pt} {	ext{d}}u}  - frac{{sqrt {{x^2} - 1} }}{x} hfill \   = int {frac{{sec u	an u + {{sec }^2}u}}{{	an u + sec u}}{kern 1pt} {	ext{d}}u}  - frac{{sqrt {{x^2} - 1} }}{x} hfill \  v = 	an u + sec u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = sec u	an u + {sec ^2}u, hfill \   = int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - frac{{sqrt {{x^2} - 1} }}{x} hfill \ end{gathered} ]

[egin{gathered}   = ln v - frac{{sqrt {{x^2} - 1} }}{x} = ln left( {	an u + sec u} 
ight) - frac{{sqrt {{x^2} - 1} }}{x} hfill \  	an u = 	an left( {operatorname{arc} sec x} 
ight) = sqrt {{x^2} - 1} ,sec u = sec left( {operatorname{arc} sec x} 
ight) = x, hfill \   = ln left( {sqrt {{x^2} - 1}  + x} 
ight) - frac{{sqrt {{x^2} - 1} }}{x} hfill \   = ln left| {sqrt {{x^2} - 1}  + x} 
ight| - frac{{sqrt {{x^2} - 1} }}{x} + C hfill \ end{gathered} ]

414.

[egin{gathered}  int {frac{1}{{{x^2} + 2x + 5}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{{{left( {x + 1} 
ight)}^2} + 4}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{x + 1}}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2}, hfill \   = frac{1}{2}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = frac{{arctan u}}{2} hfill \   = frac{{arctan frac{{x + 1}}{2}}}{2} + C hfill \  intlimits_{ - 1}^1 {frac{1}{{{x^2} + 2x + 5}}} {kern 1pt} {	ext{d}}x = frac{pi }{8} hfill \ end{gathered} ]

415.

[egin{gathered}  int {left( {x - 1} 
ight)cdot{3^x}{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x}} - {	ext{1}},v = {3^x}, hfill \  u = 1,v = frac{{{3^x}}}{{ln 3}}, hfill \   = frac{{left( {x - 1} 
ight)cdot{3^x}}}{{ln 3}} - int {frac{{{3^x}}}{{ln 3}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{left( {x - 1} 
ight)cdot{3^x}}}{{ln 3}} - frac{{{3^x}}}{{{{ln }^2}3}} + C hfill \  intlimits_0^1 {left( {x - 1} 
ight)} cdot{3^x}{kern 1pt} {	ext{d}}x = frac{{ln 3 + 1}}{{{{ln }^2}3}} - frac{3}{{{{ln }^2}3}}frac{{ln 3 - 2}}{{{{ln }^2}3}} hfill \ end{gathered} ]

416.

[egin{gathered}  int {ln left( {x + 1} 
ight){kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = int {ln u{kern 1pt} {	ext{d}}u}  hfill \  f = ln u,g = 1, hfill \  f = frac{1}{u},g = u, hfill \   = uln u - int {1{kern 1pt} {	ext{d}}u}  hfill \   = uln u - u hfill \   = left( {x + 1} 
ight)ln left( {x + 1} 
ight) - x - 1 + C hfill \   = left( {x + 1} 
ight)left[ {ln left( {x + 1} 
ight) - 1} 
ight] + C hfill \  intlimits_0^1 {ln } left( {x + 1} 
ight){kern 1pt} {	ext{d}}x = 2ln 2 - 1 hfill \ end{gathered} ]

417.

[egin{gathered}  int {frac{{{x^2}}}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  {x^2} = {x^2} - {a^2} + {a^2}, hfill \   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - int {sqrt {{a^2} - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  x = asin u,u = arcsin frac{x}{a},frac{{{	ext{d}}x}}{{{	ext{d}}u}} = acos u, hfill \   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - int {acos usqrt {{a^2} - {a^2}{{sin }^2}u} {kern 1pt} {	ext{d}}u}  hfill \   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - {a^2}int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - {a^2}int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  hfill \ end{gathered} ]

[egin{gathered}   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - frac{{{a^2}sin 2u}}{4} - frac{{{a^2}u}}{2} hfill \  u = frac{x}{a},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{a}, hfill \   = {a^2}int {frac{1}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u}  - frac{{{a^2}sin 2u}}{4} - frac{{{a^2}u}}{2} hfill \   = {a^2}arcsin frac{x}{a} - frac{{{a^2}sin 2u}}{4} - frac{{{a^2}u}}{2} hfill \  sin 2u = sin left( {2arcsin frac{x}{a}} 
ight) = frac{{2xsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{a}, hfill \ end{gathered} ]

[egin{gathered}   = {a^2}arcsin frac{x}{a} - frac{{{a^2}arcsin frac{x}{a}}}{2} - frac{{axsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{2} hfill \   = frac{{{a^2}arcsin frac{x}{a}}}{2} - frac{{axsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{2} + C hfill \   = frac{{{a^2}arcsin frac{x}{{left| a 
ight|}} - xsqrt {{a^2} - {x^2}} }}{2} + C hfill \ end{gathered} ]

418.

[egin{gathered}  int {frac{{sqrt {1 - {x^2}} }}{{{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {1 - {x^2}} ,v = frac{1}{{{x^2}}}, hfill \  u =  - frac{x}{{sqrt {1 - {x^2}} }},v =  - frac{1}{x}, hfill \   =  - int {frac{1}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  - frac{{sqrt {1 - {x^2}} }}{x} hfill \   =  - arcsin x - frac{{sqrt {1 - {x^2}} }}{x} + C hfill \  intlimits_1^{frac{{sqrt 2 }}{2}} {frac{{sqrt {1 - {x^2}} }}{{{x^2}}}} {kern 1pt} {	ext{d}}x = frac{pi }{2} - frac{{pi  + 4}}{4} = frac{{pi  - 4}}{4} hfill \ end{gathered} ]

419.

[egin{gathered}  int {frac{{arctan {{	ext{e}}^x}}}{{{{	ext{e}}^x}}}} {kern 1pt} {	ext{d}}x hfill \  u = arctan {{	ext{e}}^x},v = {{	ext{e}}^{ - x}}, hfill \  u = frac{{{{	ext{e}}^x}}}{{{{	ext{e}}^{2x}} + 1}},v =  - {{	ext{e}}^{ - x}}, hfill \   =  - int {frac{1}{{ - {{	ext{e}}^{2x}} - 1}}{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}arctan {{	ext{e}}^x} hfill \  {	ext{u}} = {	ext{2x}}, hfill \   = frac{1}{2}int {frac{1}{{{{	ext{e}}^u} + 1}}{kern 1pt} {	ext{d}}u}  - {{	ext{e}}^{ - x}}arctan {{	ext{e}}^x} hfill \  v = frac{1}{{{{	ext{e}}^u} + 1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - frac{{{{	ext{e}}^u}}}{{{{left( {{{	ext{e}}^u} + 1} 
ight)}^2}}},{{	ext{e}}^{ - u}} = frac{1}{{frac{1}{v} - 1}}, hfill \  {{	ext{e}}^u} = frac{1}{v} - 1, hfill \ end{gathered} ]

[egin{gathered}   = frac{1}{2}int {frac{1}{{v - 1}}{kern 1pt} {	ext{d}}v}  - {{	ext{e}}^{ - x}}arctan {{	ext{e}}^x} hfill \   = frac{{ln left( {frac{1}{{{{	ext{e}}^{2x}} + 1}} - 1} 
ight)}}{2} - {{	ext{e}}^{ - x}}arctan {{	ext{e}}^x} + C hfill \ end{gathered} ]

420.

[egin{gathered}  int {frac{{sqrt {{{	ext{e}}^{ - x}}} }}{{sqrt {{{	ext{e}}^x} + {{	ext{e}}^{ - x}}} }}} {kern 1pt} {	ext{d}}x = int {frac{{{{	ext{e}}^{ - frac{x}{2}}}}}{{sqrt {{{	ext{e}}^x} + {{	ext{e}}^{ - x}}} }}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{sqrt {{{	ext{e}}^{2x}} + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{2x}}, hfill \   = frac{1}{2}int {frac{1}{{sqrt {{{	ext{e}}^u} + 1} }}{kern 1pt} {	ext{d}}u}  hfill \  v = {{	ext{e}}^u} + 1,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {{	ext{e}}^u}, hfill \   = frac{1}{2}int {frac{1}{{left( {v - 1} 
ight)sqrt v }}{kern 1pt} {	ext{d}}v}  hfill \  w = sqrt v ,frac{{{	ext{d}}w}}{{{	ext{d}}v}} = frac{1}{{2sqrt v }},v = {w^2}, hfill \ end{gathered} ]

[egin{gathered}   = frac{1}{2} 	imes 2int {frac{1}{{{w^2} - 1}}{kern 1pt} {	ext{d}}w}  = int {frac{1}{{{w^2} - 1}}{kern 1pt} {	ext{d}}w}  hfill \   = frac{1}{2}int {frac{1}{{w - 1}}{kern 1pt} {	ext{d}}w}  - frac{1}{2}int {frac{1}{{w + 1}}{kern 1pt} {	ext{d}}w}  hfill \   = frac{{ln left( {w - 1} 
ight)}}{2} - frac{{ln left( {w + 1} 
ight)}}{2} hfill \   = frac{{ln left( {sqrt {{{	ext{e}}^{2x}} + 1}  - 1} 
ight)}}{2} - frac{{ln left( {sqrt {{{	ext{e}}^{2x}} + 1}  + 1} 
ight)}}{2} + C hfill \  intlimits_0^1 {frac{{sqrt {{{	ext{e}}^{ - x}}} }}{{sqrt {{{	ext{e}}^x} + {{	ext{e}}^{ - x}}} }}} {kern 1pt} {	ext{d}}x hfill \   = frac{{ - ln left( {sqrt {{{	ext{e}}^2} + 1}  + 1} 
ight) + frac{{ln left( { - 2sqrt {{{	ext{e}}^2} + 1}  + {{	ext{e}}^2} + 2} 
ight)}}{2} + ln left( {sqrt 2  + 1} 
ight) - ln left( {sqrt 2  - 1} 
ight)}}{2} hfill \ end{gathered} ]

421.

[egin{gathered}  int {frac{1}{{{{cos }^2}xsqrt {	an x} }}} {kern 1pt} {	ext{d}}x hfill \  u = frac{1}{{sqrt {	an x} }},v = frac{1}{{{{cos }^2}x}}, hfill \  u =  - frac{{{{sec }^2}x}}{{2{{	an }^{frac{3}{2}}}x}},v = 	an x, hfill \   = sqrt {	an x}  - int { - frac{{{{sec }^2}x}}{{2sqrt {	an x} }}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = sqrt {	an x}  + frac{1}{2}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  hfill \   = sqrt {	an x}  + sqrt u  hfill \   = 2sqrt {	an x}  + C hfill \ end{gathered} ]

422.

[egin{gathered}  int {frac{1}{{{x^2}}}} {cos ^2}frac{1}{x}{kern 1pt} {	ext{d}}x hfill \  u = frac{1}{x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{{x^2}}}, hfill \   =  - int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   =  - left( {frac{1}{2}int {cos 2u{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {1{kern 1pt} {	ext{d}}u} } 
ight) hfill \   =  - left( {frac{{sin 2u}}{4} + frac{u}{2}} 
ight) hfill \   =  - frac{1}{{2x}} - frac{{sin frac{2}{x}}}{4} + C hfill \   =  - frac{{xsin frac{2}{x} + 2}}{{4x}} + C hfill \ end{gathered} ]

423.

[egin{gathered}  int {frac{1}{{xsqrt {{x^2} - 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} - 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} - 1} }}, hfill \   = int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = arctan u hfill \   = arctan sqrt {{x^2} - 1}  + C hfill \ end{gathered} ]

424.

[egin{gathered}  int {frac{{{{	ext{e}}^x}left( {1 + sin x} 
ight)}}{{1 + cos x}}} {kern 1pt} {	ext{d}}x hfill \   = int {left[ {{{	ext{e}}^x}	an frac{x}{2} + frac{{{{	ext{e}}^x}{{sec }^2}frac{x}{2}}}{2}} 
ight]{	ext{d}}x}  hfill \   = int {{{	ext{e}}^x}{kern 1pt} 	an frac{x}{2}{	ext{d}}x}  + frac{1}{2}int {{{	ext{e}}^x}{{sec }^2}frac{x}{2}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x},v = {sec ^2}frac{x}{2}, hfill \  u = {{	ext{e}}^x},v = 2	an frac{x}{2}, hfill \   = int {{{	ext{e}}^x}{kern 1pt} 	an frac{x}{2}{	ext{d}}x}  + frac{1}{2}left[ {2{{	ext{e}}^x}	an frac{x}{2} - int {2{{	ext{e}}^x}{kern 1pt} 	an frac{x}{2}{	ext{d}}x} } 
ight] hfill \   =  - frac{1}{2}int {2{{	ext{e}}^x}	an frac{x}{2}{kern 1pt} {	ext{d}}x}  + int {{{	ext{e}}^x}	an frac{x}{2}{kern 1pt} {	ext{d}}x}  + 2 	imes frac{1}{2}{{	ext{e}}^x}	an frac{x}{2} hfill \   = {{	ext{e}}^x}	an frac{x}{2} + C hfill \ end{gathered} ]

425.

[egin{gathered}  int {cos } xcos frac{x}{2}{kern 1pt} {	ext{d}}x hfill \  u = frac{x}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2}, hfill \   = 2int {cos ucos 2u{kern 1pt} {	ext{d}}u}  hfill \   = 2int {frac{{cos 3u + cos u}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = 2left( {frac{{sin 3u}}{6} + frac{{sin u}}{2}} 
ight) hfill \   = frac{{sin 3u}}{3} + sin u hfill \   = frac{{sin frac{{3x}}{2}}}{3} + sin frac{x}{2} + C hfill \ end{gathered} ]

426.

[egin{gathered}  int {frac{1}{{sin xcos x}}} {kern 1pt} {	ext{d}}x hfill \   = int {csc xsec x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{{sec }^2}x}}{{	an x}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = ln u hfill \   = ln left| {	an x} 
ight| + C hfill \ end{gathered} ]

427.

[egin{gathered}  frac{{2{x^2} + 2x + 13}}{{left( {x - 2} 
ight){{left( {{x^2} + 1} 
ight)}^2}}} = frac{{Ax + B}}{{{x^2} + 1}} + frac{{Cx + D}}{{{{left( {{x^2} + 1} 
ight)}^2}}} + frac{E}{{x - 2}} hfill \   = frac{{left( {x - 2} 
ight)left( {{x^2} + 1} 
ight)left( {Ax + B} 
ight) + left( {x - 2} 
ight)left( {Cx + D} 
ight) + {{left( {{x^2} + 1} 
ight)}^2}E}}{{left( {x - 2} 
ight){{left( {{x^2} + 1} 
ight)}^2}}} hfill \  left{ {egin{array}{*{20}{l}}  {A + E = 0} \   { - 2A + B = 0} \   {A - 2B + C + 2E = 2} \   { - 2A + B - 2C + D = 2} \   { - 2B - 2D + E = 13} end{array}} 
ight. hfill \  frac{{2{x^2} + 2x + 13}}{{left( {x - 2} 
ight){{left( {{x^2} + 1} 
ight)}^2}}} = frac{{ - x - 2}}{{{x^2} + 1}} + frac{{ - 3x - 4}}{{{{left( {{x^2} + 1} 
ight)}^2}}} + frac{1}{{x - 2}} hfill \ end{gathered} ]

428.

[egin{gathered}  pi int_0^pi  {frac{{sin x}}{{pi  - x}}} dx - int_0^pi  {xfrac{{sin x}}{{pi  - x}}} dx hfill \   = int_0^pi  {pi frac{{sin x}}{{pi  - x}}} dx - int_0^pi  {xfrac{{sin x}}{{pi  - x}}} dx hfill \   = int_0^pi  {(pi  - x)frac{{sin x}}{{pi  - x}}dx}  hfill \   = int_0^pi  {sin xdx}  hfill \ end{gathered} ]

429.

[egin{gathered}  int {sqrt {{a^2}{	heta ^2} + {a^2}} {kern 1pt} {	ext{d}}	heta }  hfill \   = aint {sqrt {{	heta ^2} + 1} {kern 1pt} {	ext{d}}	heta }  hfill \  	heta  = 	an u,u = arctan 	heta ,frac{{{	ext{d}}	heta }}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = aint {{{sec }^2}usqrt {{{	an }^2}u + 1} {kern 1pt} {	ext{d}}u}  hfill \   = aint {{{sec }^3}u{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{2}aint {sec u{kern 1pt} {	ext{d}}u}  + frac{{asec u	an u}}{2} hfill \   = frac{{aln left( {	an u + sec u} 
ight)}}{2} + frac{{asec u	an u}}{2} hfill \  	an u = 	an left( {arctan 	heta } 
ight) = q,sec u = sec left( {arctan 	heta } 
ight) = sqrt {{q^2} + 1} , hfill \   = frac{{aln left( {sqrt {{	heta ^2} + 1}  + 	heta } 
ight)}}{2} + frac{{a	heta sqrt {{	heta ^2} + 1} }}{2} hfill \ end{gathered} ]

[egin{gathered}   = frac{{aleft( {ln left| {sqrt {{	heta ^2} + 1}  + 	heta } 
ight| + 	heta sqrt {{	heta ^2} + 1} } 
ight)}}{2} + C hfill \  intlimits_0^{2pi } {sqrt {{a^2}{	heta ^2} + {a^2}} } {kern 1pt} {	ext{d}}	heta  =  hfill \ end{gathered} ]

430.

[egin{gathered}  int {frac{{xarctan x}}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  u = arctan x,v = frac{x}{{sqrt {1 - {x^2}} }}, hfill \  u = frac{1}{{{x^2} + 1}},v =  - sqrt {1 - {x^2}} , hfill \   =  - int {frac{{sqrt {1 - {x^2}} }}{{ - {x^2} - 1}}{kern 1pt} {	ext{d}}x}  - sqrt {1 - {x^2}} arctan x hfill \  int {frac{{sqrt {1 - {x^2}} }}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - sqrt {1 - {x^2}} arctan x hfill \  x = sin u,u = arcsin x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = cos u, hfill \   = int {frac{{cos usqrt {1 - {{sin }^2}u} }}{{{{sin }^2}u + 1}}{kern 1pt} {	ext{d}}u}  - sqrt {1 - {x^2}} arctan x hfill \   = int {frac{{{{cos }^2}u}}{{{{sin }^2}u + 1}}{kern 1pt} {	ext{d}}u}  - sqrt {1 - {x^2}} arctan x hfill \ end{gathered} ]

[egin{gathered}  sin u = frac{{	an u}}{{sec u}},cos u = frac{1}{{sec u}},{sec ^2}u = {	an ^2}u + 1, hfill \   = int {{{sec }^2}ucdotfrac{1}{{left( {{{	an }^2}u + 1} 
ight)left( {2{{	an }^2}u + 1} 
ight)}}{kern 1pt} {	ext{d}}u}  - sqrt {1 - {x^2}} arctan x hfill \  v = 	an u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{1}{{left( {{v^2} + 1} 
ight)left( {2{v^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}v}  - sqrt {1 - {x^2}} arctan x hfill \  frac{1}{{left( {{v^2} + 1} 
ight)left( {2{v^2} + 1} 
ight)}} = frac{{Av + B}}{{{v^2} + 1}} + frac{{Cv + D}}{{2{v^2} + 1}} hfill \   = 2int {frac{1}{{2{v^2} + 1}}{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  - sqrt {1 - {x^2}} arctan x hfill \ end{gathered} ]

[egin{gathered}   = sqrt 2 arctan sqrt 2 v - arctan v - sqrt {1 - {x^2}} arctan x hfill \  arctan v = arctan left( {	an u} 
ight) = u, hfill \   = sqrt 2 arctan left( {sqrt 2 	an u} 
ight) - u - sqrt {1 - {x^2}} arctan x hfill \  	an u = 	an left( {arcsin x} 
ight) = frac{x}{{sqrt {1 - {x^2}} }}, hfill \   = sqrt 2 arctan frac{{sqrt 2 x}}{{sqrt {1 - {x^2}} }} - arcsin x - sqrt {1 - {x^2}} arctan x hfill \   = sqrt 2 arctan frac{{sqrt 2 x}}{{sqrt {1 - {x^2}} }} - sqrt {1 - {x^2}} arctan x - arcsin x + C hfill \ end{gathered} ]

431.

[egin{gathered}  int {frac{{xcos x}}{{{{sin }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x}},v = frac{{cos x}}{{{{sin }^2}x}}, hfill \  u = 1,v =  - frac{1}{{sin x}}, hfill \   =  - int { - frac{1}{{sin x}}{kern 1pt} {	ext{d}}x}  - frac{x}{{sin x}} hfill \   =  - ln left( {csc x + cot x} 
ight) - frac{x}{{sin x}} hfill \   =  - ln left| {csc x + cot x} 
ight| - frac{x}{{sin x}} + C hfill \ end{gathered} ]

432.

[egin{gathered}  int {frac{x}{{sqrt[3]{{1 - 3x}}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{x}{{sqrt[3]{{3x - 1}}}}{kern 1pt} {	ext{d}}x}  hfill \  x = frac{1}{3}left( {3x - 1} 
ight) + frac{1}{3}, hfill \   =  - int {left[ {frac{{{{left( {3x - 1} 
ight)}^{frac{2}{3}}}}}{3} + frac{1}{{3sqrt[3]{{3x - 1}}}}} 
ight]{	ext{d}}x}  hfill \   =  - frac{1}{3}int {{{left( {3x - 1} 
ight)}^{frac{2}{3}}}{kern 1pt} {	ext{d}}x}  - frac{1}{3}int {frac{1}{{sqrt[3]{{3x - 1}}}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{3x}} - {	ext{1}}, hfill \   =  - frac{1}{3} 	imes frac{1}{3}int {{u^{frac{2}{3}}}{kern 1pt} {	ext{d}}u}  - frac{1}{3} 	imes frac{1}{3}int {frac{1}{{sqrt[3]{u}}}{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{{{{left( {3x - 1} 
ight)}^{frac{5}{3}}}}}{{15}} - frac{{{{left( {3x - 1} 
ight)}^{frac{2}{3}}}}}{6} + C hfill \ end{gathered} ]

433.

[egin{gathered}  int {frac{{sin x}}{{1 + sin x}}} {kern 1pt} {	ext{d}}x hfill \  sin x = sin x + 1 - 1, hfill \   = int {1{kern 1pt} {	ext{d}}x}  - int {frac{1}{{sin x + 1}}{kern 1pt} {	ext{d}}x}  hfill \   = x - int {frac{{{{sec }^2}frac{x}{2}}}{{{{left( {	an frac{x}{2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an frac{x}{2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{{{sec }^2}frac{x}{2}}}{2}, hfill \   = x - 2int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = x + frac{2}{u} hfill \   = x + frac{2}{{	an frac{x}{2} + 1}} + C hfill \ end{gathered} ]

434.

[egin{gathered}  int {frac{{{x^2}}}{{2 - {x^2}}}{kern 1pt} {	ext{d}}x}  =  - int {frac{{{x^2}}}{{{x^2} - 2}}{kern 1pt} {	ext{d}}x}  hfill \  {x^2} = {x^2} - 2 + 2, hfill \   =  - left( {2int {frac{1}{{{x^2} - 2}}{kern 1pt} {	ext{d}}x}  + int {1{kern 1pt} {	ext{d}}x} } 
ight) hfill \  frac{1}{{{x^2} - 2}} = frac{1}{{left( {x - sqrt 2 } 
ight)left( {x + sqrt 2 } 
ight)}} hfill \   = frac{A}{{x + sqrt 2 }} + frac{B}{{x - sqrt 2 }} hfill \   =  - left( {frac{1}{{2sqrt 2 }}int {frac{1}{{x - sqrt 2 }}{kern 1pt} {	ext{d}}x}  - frac{1}{{2sqrt 2 }}int {frac{1}{{x + sqrt 2 }}{kern 1pt} {	ext{d}}x}  + x} 
ight) hfill \   = frac{{ln left| {x + sqrt 2 } 
ight|}}{{sqrt 2 }} - frac{{ln left| {x - sqrt 2 } 
ight|}}{{sqrt 2 }} - x + C hfill \   = frac{{ln left| {x + sqrt 2 } 
ight| - ln left| {x - sqrt 2 } 
ight|}}{{sqrt 2 }} - x + C hfill \ end{gathered} ]

435.

[egin{gathered}  int {csc x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{{csc }^2}x + cot xcsc x}}{{csc x + cot x}}{kern 1pt} {	ext{d}}x}  hfill \  u = csc x + cot x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - {csc ^2}x - cot xcsc x, hfill \   =  - int {frac{1}{u}{kern 1pt} {	ext{d}}u}  =  - ln u hfill \   =  - ln left| {csc x + cot x} 
ight| + C hfill \ end{gathered} ]

436.

[egin{gathered}  int {sec x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{sec x	an x + {{sec }^2}x}}{{	an x + sec x}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x + sec x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = sec x	an x + {sec ^2}x, hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = ln u hfill \   = ln left| {	an x + sec x} 
ight| + C hfill \ end{gathered} ]

437.

[egin{gathered}  frac{{{x^3} + 4{x^2} + x}}{{{{left( {x + 2} 
ight)}^2}left( {{x^2} + x + 1} 
ight)}} = frac{A}{{x + 2}} + frac{B}{{{{left( {x + 2} 
ight)}^2}}} + frac{{Cx + D}}{{{x^2} + x + 1}} hfill \   = frac{{{{left( {x + 2} 
ight)}^2}left( {Cx + D} 
ight) + left( {x + 2} 
ight)left( {{x^2} + x + 1} 
ight)A + left( {{x^2} + x + 1} 
ight)B}}{{{{left( {x + 2} 
ight)}^2}left( {{x^2} + x + 1} 
ight)}} hfill \  {x^3} + 4{x^2} + x = {left( {x + 2} 
ight)^2}left( {Cx + D} 
ight) + left( {x + 2} 
ight)left( {{x^2} + x + 1} 
ight)A + left( {{x^2} + x + 1} 
ight)B hfill \  left{ {egin{array}{*{20}{l}}  {A + C = 1} \   {3A + B + 4C + D = 4} \   {3A + B + 4C + 4D = 1} \   {2A + B + 4D = 0} end{array}} 
ight. hfill \  frac{{{x^3} + 4{x^2} + x}}{{{{left( {x + 2} 
ight)}^2}left( {{x^2} + x + 1} 
ight)}} = frac{1}{{x + 2}} + frac{2}{{{{left( {x + 2} 
ight)}^2}}} + frac{{ - 1}}{{{x^2} + x + 1}} hfill \ end{gathered} ]

438.

[egin{gathered}  int {frac{{sin sqrt t }}{{sqrt t }}{kern 1pt} {	ext{d}}t}  hfill \  u = sqrt t ,frac{{{	ext{d}}u}}{{{	ext{d}}t}} = frac{1}{{2sqrt t }}, hfill \   = 2int {sin u{kern 1pt} {	ext{d}}u}  hfill \   =  - 2cos u hfill \   =  - 2cos sqrt t  + C hfill \ end{gathered} ]

439.

[egin{gathered}  int {sqrt {2 + 2cos x} } {kern 1pt} {	ext{d}}x hfill \   = sqrt 2 int {sqrt {cos x + 1} {kern 1pt} {	ext{d}}x}  hfill \   = sqrt 2 int {sqrt 2 cos frac{x}{2}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{2}, hfill \   = 4int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = 4sin u hfill \   = 4sin frac{x}{2} + C hfill \  intlimits_0^pi  {sqrt {2 + 2cos x} } {kern 1pt} {	ext{d}}x = 4 hfill \ end{gathered} ]

440.

[egin{gathered}  int {frac{{x + sin xcos x}}{{{{left( {cos x - xsin x} 
ight)}^2}}}} {kern 1pt} {	ext{d}}x = int {frac{{frac{{sin 2x}}{2} + x}}{{{{left( {xsin x - cos x} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {frac{{sin 2x + 2x}}{{{{left( {xsin x - cos x} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}left[ {2int {frac{{sin x}}{{xsin x - cos x}}{kern 1pt} {	ext{d}}x}  + 2int {frac{{cos xleft( {2sin x + xcos x} 
ight)}}{{{{left( {xsin x - cos x} 
ight)}^2}}}{kern 1pt} {	ext{d}}x} } 
ight] hfill \  u = cos x,v = frac{{2sin x + xcos x}}{{{{left( {xsin x - cos x} 
ight)}^2}}}, hfill \ end{gathered} ]

[egin{gathered}  u =  - sin x,v =  - frac{1}{{xsin x - cos x}}, hfill \   = frac{1}{2}left( {2int {frac{{sin x}}{{xsin x - cos x}}{kern 1pt} {	ext{d}}x}  - 2int {frac{{sin x}}{{xsin x - cos x}}{kern 1pt} {	ext{d}}x}  - frac{{2cos x}}{{xsin x - cos x}}} 
ight) hfill \   =  - frac{{cos x}}{{xsin x - cos x}} + C hfill \ end{gathered} ]
推薦閱讀:

TAG:高等數學 | 高等數學大學課程 | 微積分 |