積分習題及詳解12

382.

[egin{gathered}  int {frac{1}{{sqrt {2x - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{sqrt {1 - {{left( {x - 1} 
ight)}^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} - {	ext{1,}} hfill \   = int {frac{1}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u}  hfill \   = arcsin u hfill \   = arcsin left( {x - 1} 
ight) + C hfill \ end{gathered} ]

383.

[egin{gathered}  int {frac{{{{ln }^2}x}}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{x}, hfill \   = int {{u^2}{kern 1pt} {	ext{d}}u}  = frac{{{u^3}}}{3} hfill \   = frac{{{{ln }^3}x}}{3} + C hfill \  intlimits_2^{{{	ext{e}}^2}} {frac{{{{ln }^2}x}}{x}} {kern 1pt} {	ext{d}}x = frac{8}{3} - frac{{{{ln }^3}2}}{3} hfill \   =  - frac{{{{ln }^3}2 - 8}}{3} hfill \ end{gathered} ]

384.

[egin{gathered}  int {frac{x}{{sqrt {5 - 4x} }}{kern 1pt} {	ext{d}}x}  hfill \  x =  - frac{1}{4}left( {5 - 4x} 
ight) + frac{5}{4}, hfill \   = frac{5}{4}int {frac{1}{{sqrt {5 - 4x} }}{kern 1pt} {	ext{d}}x}  - frac{1}{4}int {sqrt {5 - 4x} {kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{5}} - {	ext{4x}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 4, hfill \   =  - frac{5}{4} 	imes frac{1}{4}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  + frac{1}{4} 	imes frac{1}{4}int {sqrt u {kern 1pt} {	ext{d}}u}  hfill \   =  - frac{5}{8}sqrt u  + frac{{{u^{frac{3}{2}}}}}{{24}} hfill \   = frac{{{{left( {5 - 4x} 
ight)}^{frac{3}{2}}}}}{{24}} - frac{{5sqrt {5 - 4x} }}{8} + C hfill \   = frac{{left( { - 4x - 10} 
ight)sqrt {5 - 4x} }}{{24}} + C hfill \  intlimits_{ - 1}^1 {frac{x}{{sqrt {5 - 4x} }}} {kern 1pt} {	ext{d}}x = frac{1}{6} hfill \ end{gathered} ]

385.

[egin{gathered}  int {frac{1}{{sin x + cos x}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{frac{{1 - {{	an }^2}frac{x}{2}}}{{{{	an }^2}frac{x}{2} + 1}} + frac{{2	an frac{x}{2}}}{{{{	an }^2}frac{x}{2} + 1}}}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an frac{x}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{{{{sec }^2}frac{x}{2}}}{2} = frac{{{u^2} + 1}}{2}, hfill \   =  - 2int {frac{1}{{{u^2} - 2u - 1}}{kern 1pt} {	ext{d}}u}  hfill \  frac{1}{{{u^2} - 2u - 1}} = frac{1}{{left( {u - 1 + sqrt 2 } 
ight)left( {u - sqrt 2  - 1} 
ight)}} hfill \   = frac{A}{{u - 1 + sqrt 2 }} + frac{B}{{u - sqrt 2  - 1}}, hfill \   =  - 2left( {frac{1}{{{2^{frac{3}{2}}}}}int {frac{1}{{u - sqrt 2  - 1}}{kern 1pt} {	ext{d}}u}  - frac{1}{{{2^{frac{3}{2}}}}}int {frac{1}{{u + sqrt 2  - 1}}{kern 1pt} {	ext{d}}u} } 
ight) hfill \ end{gathered} ]

[egin{gathered}   =  - 2left[ {frac{{ln left( {u - sqrt 2  - 1} 
ight)}}{{{2^{frac{3}{2}}}}} - frac{{ln left( {u + sqrt 2  - 1} 
ight)}}{{{2^{frac{3}{2}}}}}} 
ight] hfill \   = frac{{ln left| {	an frac{x}{2} + sqrt 2  - 1} 
ight|}}{{sqrt 2 }} - frac{{ln left| {	an frac{x}{2} - sqrt 2  - 1} 
ight|}}{{sqrt 2 }} + C hfill \  intlimits_0^{frac{pi }{2}} {frac{1}{{sin x + cos x}}} {kern 1pt} {	ext{d}}x = frac{{ln left( {{2^{frac{3}{2}}} + 3} 
ight)}}{{sqrt 2 }} = frac{{sqrt 2 ln left( {2sqrt 2  + 3} 
ight)}}{2} hfill \ end{gathered} ]

386.

[egin{gathered}  int {frac{1}{{sqrt {x + 1}  + sqrt {{{left( {x + 1} 
ight)}^3}} }}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{1}{{sqrt {x + 1} left( {x + 2} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {x + 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt {x + 1} }}, hfill \   = 2int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = 2arctan u hfill \   = 2arctan sqrt {x + 1}  + C hfill \  intlimits_0^2 {frac{1}{{sqrt {x + 1}  + sqrt {{{left( {x + 1} 
ight)}^3}} }}} {kern 1pt} {	ext{d}}x = frac{pi }{6} hfill \ end{gathered} ]

387.

[egin{gathered}  int {frac{{ln left( {1 + x} 
ight)}}{{{{left( {2 - x} 
ight)}^2}}}} {kern 1pt} {	ext{d}}x hfill \  u = ln left( {x + 1} 
ight),v = frac{1}{{{{left( {x - 2} 
ight)}^2}}}, hfill \  u = frac{1}{{x + 1}},v =  - frac{1}{{x - 2}}, hfill \   =  - int {frac{1}{{left( {2 - x} 
ight)left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  - frac{{ln left( {x + 1} 
ight)}}{{x - 2}} hfill \   = int {frac{1}{{left( {x - 2} 
ight)left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  - frac{{ln left( {x + 1} 
ight)}}{{x - 2}} hfill \  u = frac{1}{{x - 2}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{{{left( {x - 2} 
ight)}^2}}},x = frac{1}{u} + 2, hfill \   =  - int {frac{1}{{3u + 1}}{kern 1pt} {	ext{d}}u}  - frac{{ln left( {x + 1} 
ight)}}{{x - 2}} hfill \  {	ext{v}} = {	ext{3u}} + {	ext{1}}, hfill \   =  - frac{1}{3}int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - frac{{ln left( {x + 1} 
ight)}}{{x - 2}} hfill \ end{gathered} ]

[egin{gathered}   - frac{{ln v}}{3} =  - frac{{ln left( {3u + 1} 
ight)}}{3} =  - frac{{ln left( {frac{3}{{x - 2}} + 1} 
ight)}}{3}, hfill \   =  - frac{{ln left( {x + 1} 
ight)}}{{x - 2}} - frac{{ln left( {frac{3}{{x - 2}} + 1} 
ight)}}{3} + C hfill \   = frac{{ln left( {x + 1} 
ight)}}{{2 - x}} - frac{{ln left( {x + 1} 
ight)}}{3} + frac{{ln left| {x - 2} 
ight|}}{3} + C hfill \  intlimits_0^1 {frac{{ln left( {1 + x} 
ight)}}{{{{left( {2 - x} 
ight)}^2}}}} {kern 1pt} {	ext{d}}x = frac{{ln 2}}{3} hfill \ end{gathered} ]

388.

frac{x}{left(x - 2
ight) left(x + 1
ight)}=frac{A}{x + 1}+frac{B}{x - 2}

389.

[egin{gathered}  int {frac{1}{{4{x^2} + 4x + 17}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{{{left( {2x + 1} 
ight)}^2} + 16}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{2x + 1}}{4},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2}, hfill \   = frac{1}{8}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = frac{{arctan u}}{8} hfill \   = frac{{arctan frac{{2x + 1}}{4}}}{8} + C hfill \ end{gathered} ]

390.

[egin{gathered}  int {frac{{arctan {{	ext{e}}^x}}}{{{{	ext{e}}^{2x}}}}} {kern 1pt} {	ext{d}}x hfill \  u = arctan {{	ext{e}}^x},v = {{	ext{e}}^{ - 2x}}, hfill \  u = frac{{{{	ext{e}}^x}}}{{{{	ext{e}}^{2x}} + 1}},v =  - frac{{{{	ext{e}}^{ - 2x}}}}{2}, hfill \   =  - int { - frac{{{{	ext{e}}^{ - x}}}}{{2left( {{{	ext{e}}^{2x}} + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  {	ext{u}} =  - {	ext{x}}, hfill \   =  - frac{1}{2}int {frac{{{{	ext{e}}^u}}}{{{{	ext{e}}^{ - 2u}} + 1}}{kern 1pt} {	ext{d}}u}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  v = {{	ext{e}}^u},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {{	ext{e}}^u},{{	ext{e}}^{2u}} = {v^2},{{	ext{e}}^{3u}} = {v^3}, hfill \   =  - frac{1}{2}int {frac{{{v^2}}}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \ end{gathered} ]

[egin{gathered}   =  - frac{1}{2}left( {int {1{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v} } 
ight) - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \   =  - frac{1}{2}left( {v - arctan v} 
ight) - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \   =  - frac{1}{2}left( {{{	ext{e}}^u} - arctan {{	ext{e}}^u}} 
ight) - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \  arctan {{	ext{e}}^{ - x}} = operatorname{arccot} {{	ext{e}}^x}, hfill \   =  - frac{1}{2}left( {{{	ext{e}}^{ - x}} - operatorname{arccot} {{	ext{e}}^x}} 
ight) - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} hfill \   =  - frac{{{{	ext{e}}^{ - 2x}}arctan {{	ext{e}}^x}}}{2} + frac{{operatorname{arccot} {{	ext{e}}^x}}}{2} - frac{{{{	ext{e}}^{ - x}}}}{2} + C hfill \ end{gathered} ]

391.

[egin{gathered}  int {frac{{{x^2}}}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \   = {a^2}int {frac{1}{{sqrt {{a^2} - {x^2}} }}{kern 1pt} {	ext{d}}x}  - int {sqrt {{a^2} - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  {	ext{# }}1x = asin uu = arcsin frac{x}{a}frac{{{	ext{d}}x}}{{{	ext{d}}u}} = acos u hfill \  {	ext{# }}2v = frac{x}{a},frac{{{	ext{d}}v}}{{{	ext{d}}x}} = frac{1}{a}, hfill \   = {a^2}int {frac{1}{{sqrt {1 - {v^2}} }}{kern 1pt} {	ext{d}}v}  - int {acos usqrt {{a^2} - {a^2}{{sin }^2}u} {kern 1pt} {	ext{d}}u}  hfill \   = {a^2}arcsin v - {a^2}int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = {a^2}arcsin v - {a^2}int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = {a^2}arcsin v - frac{{{a^2}sin 2u}}{4} - frac{{{a^2}u}}{2} hfill \ end{gathered} ]

[egin{gathered}  sin 2u = sin left( {2arcsin frac{x}{a}} 
ight) = frac{{2xsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{a}, hfill \   = {a^2}arcsin frac{x}{a} - frac{{axsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{2} - frac{{{a^2}arcsin frac{x}{a}}}{2} hfill \   = frac{{{a^2}arcsin frac{x}{a}}}{2} - frac{{axsqrt {1 - frac{{{x^2}}}{{{a^2}}}} }}{2} + C hfill \ end{gathered} ]

392.

[egin{gathered}  int {frac{1}{{sqrt {x + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  = 2sqrt u  hfill \   = 2sqrt {x + 1}  + C hfill \  intlimits_{ - 1}^3 {frac{1}{{sqrt {x + 1} }}} {kern 1pt} {	ext{d}}x = 4 hfill \ end{gathered} ]

393.

[egin{gathered}  int x sqrt {x - 3} {kern 1pt} {	ext{d}}x hfill \  x = x + 3 - 3, hfill \   = int {{{left( {x - 3} 
ight)}^{frac{3}{2}}}{kern 1pt} {	ext{d}}x}  + 3int {sqrt {x - 3} {kern 1pt} {	ext{d}}x}  hfill \   = frac{{2{{left( {x - 3} 
ight)}^{frac{5}{2}}}}}{5} + 2{left( {x - 3} 
ight)^{frac{3}{2}}} + C hfill \   = frac{{2{{left( {x - 3} 
ight)}^{frac{3}{2}}}left( {x + 2} 
ight)}}{5} + C hfill \ end{gathered} ]

394.

[egin{gathered}  int {frac{x}{{1 + sqrt {x - 1} }}} {kern 1pt} {	ext{d}}x = int {frac{{sqrt {x - 1} x - x}}{{x - 2}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {x - 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt {x - 1} }}, hfill \   = 2int {frac{{uleft( {{u^2} + 1} 
ight)}}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} + {	ext{1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 1,{u^2} = {left( {v - 1} 
ight)^2}, hfill \   = 2int {frac{{left[ {{{left( {v - 1} 
ight)}^2} + 1} 
ight]left( {v - 1} 
ight)}}{v}{kern 1pt} {	ext{d}}v}  hfill \   = 2left( {int {{v^2}{kern 1pt} {	ext{d}}v}  - 3int {v{kern 1pt} {	ext{d}}v}  - 2int {frac{1}{v}{kern 1pt} {	ext{d}}v}  + 4int {1{kern 1pt} {	ext{d}}v} } 
ight) hfill \   = 2left( { - 2ln v + frac{{{v^3}}}{3} - frac{{3{v^2}}}{2} + 4v} 
ight) hfill \ end{gathered} ]

[egin{gathered}   = 2left[ { - 2ln left( {u + 1} 
ight) + frac{{{{left( {u + 1} 
ight)}^3}}}{3} - frac{{3{{left( {u + 1} 
ight)}^2}}}{2} + 4left( {u + 1} 
ight)} 
ight] hfill \   =  - 4ln left( {u + 1} 
ight) + frac{{2{{left( {u + 1} 
ight)}^3}}}{3} - 3{left( {u + 1} 
ight)^2} + 8left( {u + 1} 
ight) hfill \   = 8left( {sqrt {x - 1}  + 1} 
ight) + frac{{2{{left( {sqrt {x - 1}  + 1} 
ight)}^3}}}{3} - 3{left( {sqrt {x - 1}  + 1} 
ight)^2} - 4ln left( {sqrt {x - 1}  + 1} 
ight) + C hfill \   = frac{{2sqrt {x - 1} left( {x + 5} 
ight)}}{3} - x - 4ln left( {sqrt {x - 1}  + 1} 
ight) + C hfill \ end{gathered} ]

395.

[egin{gathered}  int {sqrt {8 - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  x = 2sqrt 2 sin u,u = arcsin frac{x}{{2sqrt 2 }},frac{{{	ext{d}}x}}{{{	ext{d}}u}} = 2sqrt 2 cos u, hfill \   = int {2sqrt 2 cos usqrt {8 - 8{{sin }^2}u} {kern 1pt} {	ext{d}}u}  hfill \   = 8int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = 8int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = 8left( {frac{1}{2}int {cos 2u{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {1{kern 1pt} {	ext{d}}u} } 
ight) hfill \   = 8left( {frac{{sin 2u}}{4} + frac{u}{2}} 
ight) hfill \   = 2sin 2u + 4u hfill \  sin 2u = sin left( {2arcsin frac{x}{{2sqrt 2 }}} 
ight) = frac{{xsqrt {1 - frac{{{x^2}}}{8}} }}{{sqrt 2 }}, hfill \   = 4arcsin frac{x}{{2sqrt 2 }} + sqrt 2 xsqrt {1 - frac{{{x^2}}}{8}}  + C hfill \  intlimits_0^2 {sqrt {8 - {x^2}} } {kern 1pt} {	ext{d}}x = pi  + 2 hfill \ end{gathered} ]

396.

[egin{gathered}  int {frac{{cos 2x}}{{{{cos }^2}x{{sin }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \   = int {4cos 2x{{csc }^2}2x{kern 1pt} {	ext{d}}x}  hfill \  u = sin 2x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2cos 2x, hfill \   = 2int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  =  - frac{2}{u} hfill \   =  - frac{2}{{sin 2x}} + C hfill \   =  - 2csc 2x + C hfill \ end{gathered} ]

397.

[egin{gathered}  int {frac{{2cdot{3^x} - 5cdot{2^x}}}{{{3^x}}}{kern 1pt} {	ext{d}}x}  hfill \   = 2int {1{kern 1pt} {	ext{d}}x}  - 5int {frac{{{2^x}}}{{{3^x}}}{kern 1pt} {	ext{d}}x}  hfill \   = 2x - frac{{5cdot{2^x}}}{{{3^x}ln frac{2}{3}}} + C hfill \ end{gathered} ]

398.

[egin{gathered}  int {frac{{3{x^4} + 2{x^2}}}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{x^2}left( {3{x^2} + 2} 
ight)}}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  + 3int {{x^2}{kern 1pt} {	ext{d}}x}  - int {1{kern 1pt} {	ext{d}}x}  hfill \   = arctan x + {x^3} - x + C hfill \ end{gathered} ]

399.

[egin{gathered}  int {frac{{xln x}}{{{{left( {1 + {x^2}} 
ight)}^{frac{3}{2}}}}}} {kern 1pt} {	ext{d}}x hfill \  u = ln x,v = frac{x}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}, hfill \  u = frac{1}{x},v =  - frac{1}{{sqrt {{x^2} + 1} }}, hfill \   =  - int { - frac{1}{{xsqrt {{x^2} + 1} }}{kern 1pt} {	ext{d}}x}  - frac{{ln x}}{{sqrt {{x^2} + 1} }} hfill \  u = sqrt {{x^2} + 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = int {frac{1}{{{u^2} - 1}}{kern 1pt} {	ext{d}}u}  - frac{{ln x}}{{sqrt {{x^2} + 1} }} hfill \  frac{1}{{{u^2} - 1}} = frac{A}{{u + 1}} + frac{B}{{u - 1}}, hfill \   = frac{1}{2}int {frac{1}{{u - 1}}{kern 1pt} {	ext{d}}u}  - frac{1}{2}int {frac{1}{{u + 1}}{kern 1pt} {	ext{d}}u}  - frac{{ln x}}{{sqrt {{x^2} + 1} }} hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {u - 1} 
ight)}}{2} - frac{{ln left( {u + 1} 
ight)}}{2} - frac{{ln x}}{{sqrt {{x^2} + 1} }} hfill \   =  - frac{{ln left( {sqrt {{x^2} + 1}  + 1} 
ight)}}{2} + frac{{ln left( {sqrt {{x^2} + 1}  - 1} 
ight)}}{2} - frac{{ln x}}{{sqrt {{x^2} + 1} }} + C hfill \   = frac{{ln left( {sqrt {{x^2} + 1}  - 1} 
ight) - ln left( {sqrt {{x^2} + 1}  + 1} 
ight)}}{2} - frac{{ln x}}{{sqrt {{x^2} + 1} }} + C hfill \ end{gathered} ]

400.

[egin{gathered}  int {frac{1}{{{x^3} + 1}}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{1}{{left( {x + 1} 
ight)left( {{x^2} - x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{left( {x + 1} 
ight)left( {{x^2} - x + 1} 
ight)}} = frac{A}{{x + 1}} + frac{{Bx + C}}{{{x^2} - x + 1}}, hfill \   = frac{1}{3}int {frac{1}{{x + 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{3}int {frac{{x - 2}}{{{x^2} - x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{x}} - {	ext{2}} = frac{1}{2}left( {2x - 1} 
ight) - frac{3}{2}, hfill \   = frac{{ln left( {x + 1} 
ight)}}{3} - frac{1}{3}left( {frac{1}{2}int {frac{{2x - 1}}{{{x^2} - x + 1}}{kern 1pt} {	ext{d}}x}  - frac{3}{2}int {frac{1}{{{x^2} - x + 1}}{kern 1pt} {	ext{d}}x} } 
ight) hfill \  u = {x^2} - x + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x - 1, hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {x + 1} 
ight)}}{3} - frac{1}{3}left[ {frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - frac{3}{2}int {frac{1}{{{{left( {x - frac{1}{2}} 
ight)}^2} + frac{3}{4}}}{kern 1pt} {	ext{d}}x} } 
ight] hfill \   = frac{{ln left( {x + 1} 
ight)}}{3} - frac{1}{3}left[ {frac{1}{2}ln left( {{x^2} - x + 1} 
ight) - frac{3}{2}int {frac{1}{{{{left( {x - frac{1}{2}} 
ight)}^2} + frac{3}{4}}}{kern 1pt} {	ext{d}}x} } 
ight] hfill \  u = frac{{2x - 1}}{{sqrt 3 }},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{2}{{sqrt 3 }}, hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {x + 1} 
ight)}}{3} - frac{1}{3}left[ {frac{1}{2}ln left( {{x^2} - x + 1} 
ight) - frac{3}{2}frac{2}{{sqrt 3 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u} } 
ight] hfill \   = frac{{ln left( {x + 1} 
ight)}}{3} - frac{1}{3}left[ {frac{1}{2}ln left( {{x^2} - x + 1} 
ight) - frac{3}{2}frac{{2arctan u}}{{sqrt 3 }}} 
ight] hfill \   = frac{{ln left| {x + 1} 
ight|}}{3} - frac{{ln left| {{x^2} - x + 1} 
ight|}}{6} + frac{{arctan frac{{2x - 1}}{{sqrt 3 }}}}{{sqrt 3 }} + C hfill \ end{gathered} ]

401.

[egin{gathered}  int {frac{{{x^2}{{	ext{e}}^x}}}{{{{left( {2 + x} 
ight)}^2}}}} {kern 1pt} {	ext{d}}x hfill \  {	ext{u}} = {	ext{x}} + {	ext{2}},{x^2} = {left( {u - 2} 
ight)^2}, hfill \   = {{	ext{e}}^{ - 2}}int {frac{{{{left( {u - 2} 
ight)}^2}{{	ext{e}}^u}}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = {{	ext{e}}^{ - 2}}left[ {int {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  - 4left( {int {frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  - int {frac{{{{	ext{e}}^u}}}{{{u^2}}}{kern 1pt} {	ext{d}}u} } 
ight)} 
ight] hfill \  f = {{	ext{e}}^u},g = frac{1}{{{u^2}}}, hfill \  f = {{	ext{e}}^u},g =  - frac{1}{u}, hfill \   = {{	ext{e}}^{ - 2}}left[ {int {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  - 4left( {int {frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  + int { - frac{{{{	ext{e}}^u}}}{u}{kern 1pt} {	ext{d}}u}  + frac{{{{	ext{e}}^u}}}{u}} 
ight)} 
ight] hfill \ end{gathered} ]

[egin{gathered}   = {{	ext{e}}^{ - 2}}left( {{{	ext{e}}^u} - frac{{4{{	ext{e}}^u}}}{u}} 
ight) hfill \   = {{	ext{e}}^{u - 2}} - frac{{4{{	ext{e}}^{u - 2}}}}{u} hfill \   = {{	ext{e}}^x} - frac{{4{{	ext{e}}^x}}}{{x + 2}} + C hfill \   = frac{{left( {x - 2} 
ight){{	ext{e}}^x}}}{{x + 2}} + C hfill \ end{gathered} ]

402.

[egin{gathered}  int {frac{{sqrt {xleft( {x + 1} 
ight)} }}{{sqrt x  + sqrt {x + 1} }}} {kern 1pt} {	ext{d}}x hfill \   = int {sqrt x left( {x + 1} 
ight){kern 1pt} {	ext{d}}x}  - int {xsqrt {x + 1} {kern 1pt} {	ext{d}}x}  hfill \  x = x + 1 - 1, hfill \   = int {sqrt x left( {x + 1} 
ight){kern 1pt} {	ext{d}}x}  - left[ {int {{{left( {x + 1} 
ight)}^{frac{3}{2}}}{kern 1pt} {	ext{d}}x}  - int {sqrt {x + 1} {kern 1pt} {	ext{d}}x} } 
ight] hfill \   =  - frac{{2{{left( {x + 1} 
ight)}^{frac{5}{2}}}}}{5} + frac{{2{{left( {x + 1} 
ight)}^{frac{3}{2}}}}}{3} + frac{{2{x^{frac{5}{2}}}}}{5} + frac{{2{x^{frac{3}{2}}}}}{3} + C hfill \ end{gathered} ]

403.

[egin{gathered}  int {frac{1}{{sqrt {xleft( {1 + x} 
ight)} }}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{1}{{sqrt x sqrt {x + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {frac{1}{{sqrt {{u^2} + 1} }}{kern 1pt} {	ext{d}}u}  hfill \  u = 	an v,v = arctan u,frac{{{	ext{d}}u}}{{{	ext{d}}v}} = {sec ^2}v, hfill \   = 2int {frac{{{{sec }^2}v}}{{sqrt {{{	an }^2}v + 1} }}{kern 1pt} {	ext{d}}v}  = 2int {sec v{kern 1pt} {	ext{d}}v}  hfill \   = 2ln left( {	an v + sec v} 
ight) hfill \  	an v = 	an left( {arctan u} 
ight) = u,sec left( {arctan u} 
ight) = sqrt {{u^2} + 1} , hfill \   = 2ln left( {sqrt {{u^2} + 1}  + u} 
ight) hfill \   = 2ln left( {sqrt {x + 1}  + sqrt x } 
ight) + C hfill \ end{gathered} ]

404.

[egin{gathered}  int {sqrt {x - {x^2}} {kern 1pt} {	ext{d}}x}  = int {sqrt {frac{1}{4} - {{left( {x - frac{1}{2}} 
ight)}^2}} {kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {sqrt {1 - {{left( {2x - 1} 
ight)}^2}} {kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{2x}} - {	ext{1}}, hfill \   = frac{1}{2} 	imes frac{1}{2}int {sqrt {1 - {u^2}} {kern 1pt} {	ext{d}}u}  hfill \  u = sin v,v = arcsin u,frac{{{	ext{d}}u}}{{{	ext{d}}v}} = cos v, hfill \   = frac{1}{4}int {cos vsqrt {1 - {{sin }^2}v} {kern 1pt} {	ext{d}}v}  hfill \   = frac{1}{4}int {{{cos }^2}v{kern 1pt} {	ext{d}}v}  = frac{1}{4}int {frac{{cos 2v + 1}}{2}{kern 1pt} {	ext{d}}v}  hfill \   = frac{1}{4}left( {frac{{sin 2v}}{4} + frac{v}{2}} 
ight) hfill \  sin 2v = sin left( {2arcsin u} 
ight) = 2usqrt {1 - {u^2}} , hfill \   = frac{1}{4}left( {frac{{arcsin left( u 
ight)}}{2} + frac{{usqrt {1 - {u^2}} }}{2}} 
ight) hfill \ end{gathered} ]

[ = frac{{arcsin left( {2x - 1} 
ight)}}{8} + frac{{left( {2x - 1} 
ight)sqrt {1 - {{left( {2x - 1} 
ight)}^2}} }}{8} + C]

405.

[egin{gathered}  int {frac{1}{{x + sqrt {{x^2} + 1} }}} {kern 1pt} {	ext{d}}x hfill \   = int {sqrt {{x^2} + 1} {kern 1pt} {	ext{d}}x}  - int {x{kern 1pt} {	ext{d}}x}  hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {{{sec }^2}usqrt {{{	an }^2}u + 1} {kern 1pt} {	ext{d}}u}  - frac{{{x^2}}}{2} hfill \   = int {{{sec }^3}u{kern 1pt} {	ext{d}}u}  - frac{{{x^2}}}{2} hfill \   = frac{1}{2}int {sec u{kern 1pt} {	ext{d}}u}  + frac{{sec u	an u}}{2} - frac{{{x^2}}}{2} hfill \   = frac{{ln left( {	an u + sec u} 
ight)}}{2} + frac{{sec left( u 
ight)	an u}}{2} - frac{{{x^2}}}{2} hfill \ end{gathered} ]

[egin{gathered}  	an u = 	an left( {arctan x} 
ight) = x,sec u = sec left( {arctan x} 
ight) = sqrt {{x^2} + 1} , hfill \   = frac{{ln left| {sqrt {{x^2} + 1}  + x} 
ight|}}{2} + frac{{xsqrt {{x^2} + 1} }}{2} - frac{{{x^2}}}{2} + C hfill \   = frac{{ln left| {sqrt {{x^2} + 1}  + x} 
ight| + xleft( {sqrt {{x^2} + 1}  - x} 
ight)}}{2} + C hfill \ end{gathered} ]

406.

[egin{gathered}  int {frac{{2t}}{{tsqrt {1 + {t^2}} }}} {kern 1pt} {	ext{d}}t = 2int {frac{1}{{sqrt {{t^2} + 1} }}{kern 1pt} {	ext{d}}t}  hfill \  t = 	an u,u = arctan t,frac{{{	ext{d}}t}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = 2int {frac{{{{sec }^2}u}}{{sqrt {{{	an }^2}u + 1} }}{kern 1pt} {	ext{d}}u}  = 2int {sec u{kern 1pt} {	ext{d}}u}  hfill \   = 2int {frac{{sec u	an u + {{sec }^2}u}}{{	an u + sec u}}{kern 1pt} {	ext{d}}u}  hfill \  v = 	an u + sec u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = sec u	an u + {sec ^2}u, hfill \   = 2int {frac{1}{v}{kern 1pt} {	ext{d}}v}  = 2ln v = 2ln left( {	an u + sec u} 
ight) hfill \  	an u = 	an left( {arctan t} 
ight) = t,sec u = sec left( {arctan t} 
ight) = sqrt {{t^2} + 1} , hfill \   = 2ln left( {sqrt {{t^2} + 1}  + t} 
ight) = 2ln left| {sqrt {{t^2} + 1}  + t} 
ight| + C hfill \ end{gathered} ]

407.

[egin{gathered}  int {frac{1}{{{x^2} + 2x + 2}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{{{left( {x + 1} 
ight)}^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = arctan u hfill \   = arctan left( {x + 1} 
ight) hfill \   = arctan left( {x + 1} 
ight) + C hfill \  intlimits_{ - 2}^0 {frac{1}{{{x^2} + 2x + 2}}} {kern 1pt} {	ext{d}}x = frac{pi }{2} hfill \ end{gathered} ]

408.

[egin{gathered}  int {frac{{cos 2x}}{{sin x + cos x}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{{cos }^2}x - {{sin }^2}x}}{{sin x + cos x}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{{{{sin }^2}x - {{cos }^2}x}}{{sin x + cos x}}{kern 1pt} {	ext{d}}x}  hfill \   =  - left( {int {sin x{kern 1pt} {	ext{d}}x}  - int {cos x{	ext{d}}x} } 
ight) hfill \   =  - left( { - sin x - cos x} 
ight) hfill \   = sin x + cos x + C hfill \ end{gathered} ]

409.

[egin{gathered}  int {frac{1}{{{x^2}sqrt {1 + {x^2}} }}} {kern 1pt} {	ext{d}}x hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{{{	an }^2}usqrt {{{	an }^2}u + 1} }}{kern 1pt} {	ext{d}}u}  = int {frac{{sec u}}{{{{	an }^2}u}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{{cos u}}{{{{sin }^2}u}}{kern 1pt} {	ext{d}}u}  hfill \  v = sin u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = cos u, hfill \   = int {frac{1}{{{v^2}}}{kern 1pt} {	ext{d}}v}  =  - frac{1}{v} hfill \   =  - frac{1}{{sin u}} hfill \  sin u = sin left( {arctan x} 
ight) = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   =  - frac{{sqrt {{x^2} + 1} }}{x} + C hfill \ end{gathered} ]

410.

[egin{gathered}  int {frac{x}{{1 + {x^2}}}} {kern 1pt} {	ext{d}}x hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = frac{{ln u}}{2} hfill \   = frac{{ln left( {{x^2} + 1} 
ight)}}{2} + C hfill \ end{gathered} ]

411.

[egin{gathered}  int {frac{{sqrt {1 + {x^2}} }}{{sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x hfill \  u = arcsin x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{sqrt {1 - {x^2}} }}, hfill \  {x^2} = {sin ^2}u,{sin ^2}x = 1 - {cos ^2}x, hfill \  {cos ^2}x = 1 - {sin ^2}x, hfill \   = int {sqrt {{{sin }^2}u + 1} {kern 1pt} {	ext{d}}u}  hfill \ end{gathered} ]

Elliptic integral

[egin{gathered}   = operatorname{E} left( {u{kern 1pt} |{kern 1pt}  - 1} 
ight) hfill \   = operatorname{E} left( {arcsin x{kern 1pt} |{kern 1pt}  - 1} 
ight) + C hfill \ end{gathered} ]
推薦閱讀:

TAG:高等數學 | 高等數學大學課程 | 微積分 |