積分練習草稿7

211.

[egin{gathered}  int {frac{{{x^3}}}{{{x^2} + 2}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{1}{{{x^2} + 2}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{{2x}}{{{{left( {{x^2} + 2} 
ight)}^2}}},{x^2} = frac{1}{u} - 2, hfill \   = frac{1}{2}int {frac{{2u - 1}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{2}(2int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u} ) hfill \   = ln u + frac{1}{{2u}} hfill \  ln frac{1}{{{x^2} + 2}} =  - ln left( {{x^2} + 2} 
ight), hfill \   = frac{{{x^2} + 2}}{2} - ln left( {{x^2} + 2} 
ight) + C hfill \   = frac{{{x^2}}}{2} - ln left( {{x^2} + 2} 
ight) + C hfill \ end{gathered} ]

212.

[egin{gathered}  int {frac{{4{t^2}}}{{1 + {t^2}}}} {kern 1pt} {	ext{d}}t = 4int {} frac{{{t^2}}}{{{t^2} + 1}}{kern 1pt} {	ext{d}}t hfill \  {t^2}{	ext{ = }}{t^2} + 1 - 1, hfill \   = 4(int {1{kern 1pt} {	ext{d}}t}  - int {frac{1}{{{t^2} + 1}}{kern 1pt} {	ext{d}}t} ) hfill \   = 4t - 4arctan t + C hfill \ end{gathered} ]

213.

[egin{gathered}  int {frac{{ln left( {1 + x} 
ight)}}{{sqrt x }}} {kern 1pt} {	ext{d}}x hfill \  u = ln left( {x + 1} 
ight),v = frac{1}{{sqrt x }}, hfill \  u = frac{1}{{x + 1}},v = frac{1}{{x + 1}}, hfill \   = 2sqrt x ln left( {x + 1} 
ight) - int {frac{{2sqrt x }}{{x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }},x = {u^2}, hfill \   = 2sqrt x ln left( {x + 1} 
ight) - 2 	imes 2int {frac{{{u^2}}}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = 2sqrt x ln left( {x + 1} 
ight) - 4(smallint 1{kern 1pt} {	ext{d}}u - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u} ) hfill \   = 2sqrt x ln left( {x + 1} 
ight) - 4u + 4arctan u hfill \   = 2sqrt x ln left( {x + 1} 
ight) - 4sqrt x  + 4arctan sqrt x  + C hfill \ end{gathered} ]

214.

[egin{gathered}  int {frac{{arcsin sqrt x }}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {arcsin u{kern 1pt} {	ext{d}}u}  hfill \  f = arcsin u,g = 1, hfill \  f = frac{1}{{sqrt {1 - {u^2}} }},g = {	ext{u}}, hfill \   = 2(uarcsin u - int {frac{u}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u} ) hfill \  v = 1 - {u^2},frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - 2u, hfill \   = 2(uarcsin u + frac{1}{2}int {frac{1}{{sqrt v }}{kern 1pt} {	ext{d}}v} ) hfill \   = 2(uarcsin u + sqrt v ) hfill \   = 2uarcsin u + 2sqrt {1 - {u^2}}  hfill \   = 2sqrt {1 - x}  + 2sqrt x arcsin sqrt x  + C hfill \   = 2left( {sqrt {1 - x}  + sqrt x arcsin sqrt x } 
ight) + C hfill \ end{gathered} ]

215.

[egin{gathered}  int  -  frac{{2xy}}{{{{left( {{x^2} + {y^2}} 
ight)}^2}}}{kern 1pt} {	ext{d}}y hfill \  u = {y^2} + {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}y}} = 2y, hfill \   =  - xint {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  = frac{x}{u} hfill \   = frac{x}{{{y^2} + {x^2}}} + C hfill \ end{gathered} ]

216.

[egin{gathered}  int {{{	an }^2}x{kern 1pt} {	ext{d}}x}  hfill \   = int {{{sec }^2}x{kern 1pt} {	ext{d}}x}  - int {1{kern 1pt} {	ext{d}}x}  hfill \   = 	an x - x + C hfill \  intlimits_0^{frac{pi }{4}} {{{	an }^2}} left( x 
ight){kern 1pt} {	ext{d}}x = 1 - frac{pi }{4} hfill \ end{gathered} ]

217.

[egin{gathered}  int {frac{{cos x}}{{1 + sin x}}} {kern 1pt} {	ext{d}}x hfill \  u = sin x + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = cos x, hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = ln u hfill \   = ln left( {sin x + 1} 
ight) + C hfill \ end{gathered} ]

218.

[egin{gathered}  int {frac{{cos x{{	ext{e}}^{ln left| {{x^2} - 1} 
ight|}}}}{{{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{cos xleft| {{x^2} - 1} 
ight|}}{{{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{left| {{x^2} - 1} 
ight|}}{{{x^2} - 1}},v = cos x, hfill \  u = 0,v = sin x, hfill \   = frac{{sin xleft| {{x^2} - 1} 
ight|}}{{{x^2} - 1}} - int {0{kern 1pt} {	ext{d}}x}  hfill \   = frac{{sin xleft| {{x^2} - 1} 
ight|}}{{{x^2} - 1}} + C hfill \ end{gathered} ]

219.

[egin{gathered}  int {frac{1}{{{x^2} + {a^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{a},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{a}, hfill \   = frac{1}{a}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{arctan u}}{a} hfill \   = frac{{arctan frac{x}{a}}}{a} + C hfill \  intlimits_0^{sqrt 3 a} {frac{1}{{{a^2} + {x^2}}}} {kern 1pt} {	ext{d}}x = frac{pi }{{3a}} hfill \ end{gathered} ]

220.

[egin{gathered}  int {frac{{1 + x}}{{sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x hfill \   = int {frac{x}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  + int {frac{1}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  u = 1 - {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 2x, hfill \   =  - frac{1}{2}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  + arcsin x hfill \   = arcsin x - sqrt {1 - {x^2}}  + C hfill \  intlimits_0^{frac{1}{2}} {frac{{1 + x}}{{sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x = frac{{pi  - 3sqrt 3  + 6}}{6} hfill \ end{gathered} ]

221.

[egin{gathered}  int {frac{{cos sqrt x }}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {cos u{kern 1pt} {	ext{d}}u}  = 2sin u hfill \   = 2sin sqrt x  + C hfill \  intlimits_{frac{{{pi ^2}}}{4}}^{{pi ^2}} {frac{{cos sqrt x }}{{sqrt x }}} {kern 1pt} {	ext{d}}x =  - 2 hfill \ end{gathered} ]

222.

[egin{gathered}  int {frac{{{{left( {x - 1} 
ight)}^2}}}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \   = int {{x^{frac{3}{2}}}{kern 1pt} {	ext{d}}x}  - 2int {sqrt x {kern 1pt} {	ext{d}}x}  + int {frac{1}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{2{x^{frac{5}{2}}}}}{5} - frac{{4{x^{frac{3}{2}}}}}{3} + 2sqrt x  + C hfill \   = frac{{2sqrt x left( {3{x^2} - 10x + 15} 
ight)}}{{15}} + C hfill \ end{gathered} ]

223.

[egin{gathered}  int {frac{1}{{1 + sqrt x }}} {kern 1pt} {	ext{d}}x hfill \  u = sqrt x  + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {frac{{u - 1}}{u}{kern 1pt} {	ext{d}}u}  hfill \   = 2(int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{u}{kern 1pt} {	ext{d}}u} ) hfill \   = 2u - 2ln u hfill \   = 2left( {sqrt x  + 1} 
ight) - 2ln left( {sqrt x  + 1} 
ight) + C hfill \   = 2sqrt x  - 2ln left( {sqrt x  + 1} 
ight) + C hfill \  intlimits_0^4 {frac{1}{{1 + sqrt x }}} {kern 1pt} {	ext{d}}x = 4 - 2ln 3 hfill \ end{gathered} ]

224.

[egin{gathered}  int {frac{1}{{sqrt {x - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{sqrt {frac{1}{4} - {{left( {x - frac{1}{2}} 
ight)}^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{2x}} - {	ext{1}}, hfill \   = int {frac{1}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u}  = arcsin u hfill \   = arcsin left( {2x - 1} 
ight) + C hfill \ end{gathered} ]

225.

[egin{gathered}  int {frac{1}{{{x^2}sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  x = sin u,u = arcsin x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = cos u, hfill \   = int {frac{{cos u}}{{{{sin }^2}usqrt {1 - {{sin }^2}u} }}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{{{sin }^2}u}}{kern 1pt} {	ext{d}}u}  = int {{{csc }^2}u{kern 1pt} {	ext{d}}u}  hfill \   =  - cot u hfill \  cot left( {arcsin x} 
ight) = frac{{sqrt {1 - {x^2}} }}{x}, hfill \   =  - frac{{sqrt {1 - {x^2}} }}{x} + C hfill \ end{gathered} ]

226.

[egin{gathered}  int {ln } left( {1 + {x^2}} 
ight){kern 1pt} {	ext{d}}x hfill \  u = ln left( {{x^2} + 1} 
ight),v = 1, hfill \  u = frac{{2x}}{{{x^2} + 1}},v = x, hfill \   = xln left( {{x^2} + 1} 
ight) - int {frac{{2{x^2}}}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {x^2} = {x^2} + 1 - 1, hfill \   = xln left( {{x^2} + 1} 
ight) - 2(int {1{kern 1pt} {	ext{d}}x}  - int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x} ) hfill \   = xln left( {{x^2} + 1} 
ight) - 2x + 2arctan x + C hfill \   = xln left( {{x^2} + 1} 
ight) - 2left( {x - arctan x} 
ight) + C hfill \ end{gathered} ]

227.

[egin{gathered}  int {frac{1}{{4 - {x^2}}}{kern 1pt} {	ext{d}}x}  =  - int {frac{1}{{{x^2} - 4}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{1}{{left( {x - 2} 
ight)left( {x + 2} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{left( {x - 2} 
ight)left( {x + 2} 
ight)}} = frac{A}{{x - 2}} + frac{B}{{x + 2}}, hfill \   =  - (frac{1}{4}int {frac{1}{{x - 2}}{kern 1pt} {	ext{d}}x}  - frac{1}{4}int {frac{1}{{x + 2}}{kern 1pt} {	ext{d}}x} ) hfill \   =  - left[ {frac{{ln left( {x - 2} 
ight)}}{4} - frac{{ln left( {x + 2} 
ight)}}{4}} 
ight] hfill \   = frac{{ln left| {x + 2} 
ight|}}{4} - frac{{ln left| {x - 2} 
ight|}}{4} + C hfill \   = frac{{ln left| {x + 2} 
ight| - ln left| {x - 2} 
ight|}}{4} + C hfill \ end{gathered} ]

228.

[egin{gathered}  int {{x^2}ln x{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,v = {x^2}, hfill \  u = frac{1}{x},v = frac{{{x^3}}}{3}, hfill \   = frac{{{x^3}ln x}}{3} - int {frac{{{x^2}}}{3}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{{x^3}ln x}}{3} - frac{{{x^3}}}{9} + C hfill \   = frac{{{x^3}left( {3ln x - 1} 
ight)}}{9} + C hfill \ end{gathered} ]

229.

[egin{gathered}  int {frac{1}{{sqrt {{v^2} + 1} }}{kern 1pt} {	ext{d}}v}  hfill \  v = 	an u,u = arctan v,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{sqrt {{{	an }^2}u + 1} }}{kern 1pt} {	ext{d}}u}  = int {sec u{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{{sec u	an u + {{sec }^2}u}}{{	an u + sec u}}{kern 1pt} {	ext{d}}u}  hfill \  w = 	an u + sec u,frac{{{	ext{d}}w}}{{{	ext{d}}u}} = sec u	an u + {sec ^2}u, hfill \   = int {frac{1}{w}{kern 1pt} {	ext{d}}w}  = ln w = ln left( {	an u + sec u} 
ight) hfill \  	an left( {arctan v} 
ight) = v,sec left( {arctan v} 
ight) = sqrt {{v^2} + 1} , hfill \   = ln left( {sqrt {{v^2} + 1}  + v} 
ight) hfill \   = ln left| {sqrt {{v^2} + 1}  + v} 
ight| + C hfill \ end{gathered} ]

230.

[egin{gathered}  int {xln x{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,v = x, hfill \  u = frac{1}{x},v = frac{{{x^2}}}{2}, hfill \   = frac{{{x^2}ln x}}{2} - int {frac{x}{2}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{{x^2}ln x}}{2} - frac{{{x^2}}}{4} + C hfill \   = frac{{{x^2}left( {2ln x - 1} 
ight)}}{4} + C hfill \ end{gathered} ]

231.

[egin{gathered}  int {frac{1}{{sqrt {{{left( {{x^2} + 1} 
ight)}^3}} }}} {kern 1pt} {	ext{d}}x hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{{{left( {{{	an }^2}u + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}u}  = int {frac{1}{{sec u}}{kern 1pt} {	ext{d}}u}  hfill \   = int {cos u{kern 1pt} {	ext{d}}u}  = sin u hfill \  sin u = sin left( {arctan x} 
ight) = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = frac{x}{{sqrt {{x^2} + 1} }} + C hfill \ end{gathered} ]

232.

[egin{gathered}  int {frac{1}{{1 + sqrt x }}} {kern 1pt} {	ext{d}}x hfill \  u = sqrt x  + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {frac{{u - 1}}{u}{kern 1pt} {	ext{d}}u}  = 2(int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{u}{kern 1pt} {	ext{d}}u} ) hfill \   = 2u - 2ln u hfill \   = 2left( {sqrt x  + 1} 
ight) - 2ln left( {sqrt x  + 1} 
ight) + C hfill \   = 2sqrt x  - 2ln left( {sqrt x  + 1} 
ight) + C hfill \ end{gathered} ]

233.

[egin{gathered}  int {frac{{cos sqrt x }}{{sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = 2sin u hfill \   = 2sin sqrt x  + C hfill \  intlimits_0^{frac{{{pi ^2}}}{4}} {frac{{cos sqrt x }}{{sqrt x }}} {kern 1pt} {	ext{d}}x = 2 hfill \ end{gathered} ]

234.

[egin{gathered}  int {frac{1}{{sqrt {2 + {x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{{sqrt 2 }},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{sqrt 2 }}, hfill \   = int {frac{1}{{sqrt {{u^2} + 1} }}{kern 1pt} {	ext{d}}u}  hfill \  u = 	an v,v = arctan u,frac{{{	ext{d}}u}}{{{	ext{d}}v}} = {sec ^2}v, hfill \   = int {frac{{{{sec }^2}v}}{{sqrt {{{	an }^2}v + 1} }}{kern 1pt} {	ext{d}}v}  = int {sec v{kern 1pt} {	ext{d}}v}  hfill \   = ln left( {	an v + sec v} 
ight) hfill \  	an left( {arctan u} 
ight) = u,sec left( {arctan u} 
ight) = sqrt {{u^2} + 1} , hfill \   = ln left( {sqrt {{u^2} + 1}  + u} 
ight) hfill \   = ln left| {sqrt {frac{{{x^2}}}{2} + 1}  + frac{x}{{sqrt 2 }}} 
ight| + C hfill \   = ln left| {sqrt {{x^2} + 2}  + x} 
ight| + C hfill \  intlimits_0^{sqrt 2 } {frac{1}{{sqrt {2 + {x^2}} }}} {kern 1pt} {	ext{d}}x =  hfill \ end{gathered} ]

235.

[egin{gathered}  int {frac{{sin 2x}}{{1 + {{sin }^2}x}}} {kern 1pt} {	ext{d}}x hfill \   = int {cos xcdotfrac{{2sin x}}{{{{sin }^2}x + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = sin x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = cos x, hfill \   = 2int {frac{u}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = {u^2} + 1,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 2u, hfill \   = 2 	imes frac{1}{2}int {frac{1}{v}{kern 1pt} {	ext{d}}v}  = ln v = ln left( {{u^2} + 1} 
ight) hfill \   = ln left( {{{sin }^2}x + 1} 
ight) + C hfill \ end{gathered} ]

236.

[egin{gathered}  int {frac{{left( {x + 1} 
ight)sin x}}{{{{cos }^3}x}}{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x}} + {	ext{1}},v = frac{{sin x}}{{{{cos }^3}x}}, hfill \  u = 1,v = frac{1}{{2{{cos }^2}x}}, hfill \   = frac{{x + 1}}{{2{{cos }^2}x}} - int {frac{1}{{2{{cos }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{x + 1}}{{2{{cos }^2}x}} - frac{{	an x}}{2} + C hfill \   =  - frac{{	an x + left( { - x - 1} 
ight){{sec }^2}x}}{2} + C hfill \ end{gathered} ]

237.

[egin{gathered}  int {sin } xln left( {1 + cos x} 
ight){kern 1pt} {	ext{d}}x hfill \  u = cos x + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - sin x, hfill \   =  - int {ln u{kern 1pt} {	ext{d}}u}  hfill \  f = ln u,g = 1, hfill \  f = frac{1}{u},g = u, hfill \   =  - (uln u - int {1{kern 1pt} {	ext{d}}u} ) hfill \   = u - uln u hfill \   =  - left( {cos x + 1} 
ight)ln left( {cos x + 1} 
ight) + cos x + 1 + C hfill \   = cos x - left( {cos x + 1} 
ight)ln left( {cos x + 1} 
ight) + C hfill \ end{gathered} ]

238.

[egin{gathered}  int {{2^{ - x}}} x{kern 1pt} {	ext{d}}x = int {frac{x}{{{2^x}}}{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x}},v = frac{1}{{{2^x}}}, hfill \  u = 1,v =  - frac{1}{{ln 2cdot{2^x}}}, hfill \   =  - int { - frac{1}{{ln 2cdot{2^x}}}{kern 1pt} {	ext{d}}x}  - frac{x}{{ln 2cdot{2^x}}} hfill \  {	ext{u}} =  - {	ext{x}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 1, hfill \   =  - frac{1}{{ln 2}}int {{2^u}{kern 1pt} {	ext{d}}u}  - frac{x}{{ln 2cdot{2^x}}} hfill \   =  - frac{{{2^u}}}{{{{ln }^2}2}} - frac{x}{{ln 2cdot{2^x}}} hfill \   =  - frac{x}{{{2^x}ln 2}} - frac{1}{{{2^x}{{ln }^2}2}} + C hfill \   =  - frac{{xln 2 + 1}}{{{2^x}{{ln }^2}2}} + C hfill \ end{gathered} ]

239.

[egin{gathered}  int {frac{{3 - {u^2}}}{{{u^3} - u}}{kern 1pt} {	ext{d}}u}  =  - int {frac{{{u^2} - 3}}{{uleft( {{u^2} - 1} 
ight)}}{kern 1pt} {	ext{d}}u}  hfill \  frac{{{u^2} - 3}}{{uleft( {{u^2} - 1} 
ight)}} = frac{{{u^2} - 3}}{{uleft( {u - 1} 
ight)left( {u + 1} 
ight)}} hfill \   = frac{A}{u} + frac{B}{{u + 1}} + frac{C}{{u - 1}}, hfill \   =  - ( - int {frac{1}{{u + 1}}{kern 1pt} {	ext{d}}u}  + 3int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{u - 1}}{kern 1pt} {	ext{d}}u} ) hfill \   = left[ { - ln left( {u + 1} 
ight) + 3ln u - ln left( {u - 1} 
ight)} 
ight] hfill \   = ln left| {u + 1} 
ight| - 3ln left| u 
ight| + ln left| {u - 1} 
ight| + C hfill \ end{gathered} ]

240.

[egin{gathered}  int {frac{{sqrt {{x^2} - 1} }}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} - 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} - 1} }}, hfill \   = int {frac{{{u^2}}}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {u^2} = {u^2} + 1 - 1, hfill \   = int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = u - arctan u hfill \   = sqrt {{x^2} - 1}  - arctan sqrt {{x^2} - 1}  + C hfill \  intlimits_1^2 {frac{{sqrt {{x^2} - 1} }}{x}} {kern 1pt} {	ext{d}}x = frac{{pi  + 2cdot3sqrt 3 }}{6} - frac{pi }{2} =  - frac{{pi  - 3sqrt 3 }}{3} hfill \ end{gathered} ]

241.

[egin{gathered}  int {frac{1}{{xleft( {{x^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  = int {frac{1}{{left( {frac{1}{{{x^2}}} + 1} 
ight){x^3}}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{1}{{{x^2}}} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{2}{{{x^3}}}, hfill \   =  - frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  =  - frac{{ln u}}{2} hfill \   =  - frac{{ln left( {frac{1}{{{x^2}}} + 1} 
ight)}}{2} + C hfill \   = ln left| x 
ight| - frac{{ln left( {{x^2} + 1} 
ight)}}{2} + C hfill \ end{gathered} ]

242.

[egin{gathered}  int {{{	ext{e}}^{2x}}sin {{	ext{e}}^{2x}}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^{2x}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2{{	ext{e}}^{2x}}, hfill \   = frac{1}{2}int {sin u{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{{cos u}}{2} hfill \   =  - frac{{cos {{	ext{e}}^{2x}}}}{2} + C hfill \ end{gathered} ]

243.

[egin{gathered}  int {frac{{3{x^4} + 3{x^2} + 1}}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  + 3int {{x^2}{kern 1pt} {	ext{d}}x}  hfill \   = arctan x + {x^3} + C hfill \ end{gathered} ]

244.

[egin{gathered}  int {x{{ln }^2}x{kern 1pt} {	ext{d}}x}  hfill \  u = {ln ^2}x,v = x, hfill \  u = frac{{2ln x}}{x},v = frac{{{x^2}}}{2}, hfill \   = frac{{{x^2}{{ln }^2}x}}{2} - int {xln x{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,v = x, hfill \  u = frac{1}{x},v = frac{{{x^2}}}{2}, hfill \   = frac{{{x^2}{{ln }^2}x}}{2} - (frac{{{x^2}ln x}}{2} - int {frac{x}{2}{kern 1pt} {	ext{d}}x} ) hfill \   = frac{{{x^2}{{ln }^2}x}}{2} - frac{{{x^2}ln x}}{2} + frac{{{x^2}}}{4} + C hfill \   = frac{{{x^2}left( {2{{ln }^2}x - 2ln x + 1} 
ight)}}{4} + C hfill \ end{gathered} ]

245.

[egin{gathered}  int {{{	ext{e}}^{ - x}}sin x{kern 1pt} {	ext{d}}x}  hfill \  u = sin x,v = {{	ext{e}}^{ - x}}, hfill \  u = cos x,v =  - {{	ext{e}}^{ - x}}, hfill \   =  - int { - {{	ext{e}}^{ - x}}cos x{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}sin x hfill \  u = cos x,v =  - {{	ext{e}}^{ - x}}, hfill \  u =  - sin x,v = {{	ext{e}}^{ - x}}, hfill \   = int { - {{	ext{e}}^{ - x}}sin x{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}sin x - {{	ext{e}}^{ - x}}cos x hfill \   = frac{{ - {{	ext{e}}^{ - x}}sin x - {{	ext{e}}^{ - x}}cos x}}{2} + C hfill \   =  - frac{{{{	ext{e}}^{ - x}}left( {sin x + cos x} 
ight)}}{2} + C hfill \ end{gathered} ]

246.

[egin{gathered}  int {xcos xsin x{	ext{d}}x}  = frac{1}{2}int {xsin 2x{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x}},v = sin 2x, hfill \  u = 1,v =  - frac{{cos 2x}}{2}, hfill \   = frac{1}{2}( - int { - frac{{cos 2x}}{2}{kern 1pt} {	ext{d}}x}  - frac{{xcos 2x}}{2}) hfill \   = frac{1}{2}(frac{{sin 2x}}{4} - frac{{xcos 2x}}{2}) hfill \   = frac{{sin 2x}}{8} - frac{{xcos 2x}}{4} + C hfill \   = frac{{sin 2x - 2xcos 2x}}{8} + C hfill \ end{gathered} ]

247.

[egin{gathered}  int r ln left( {1 + {r^2}} 
ight){kern 1pt} {	ext{d}}r hfill \  u = {r^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}r}} = 2r, hfill \   = frac{1}{2}int {ln u{kern 1pt} {	ext{d}}u}  hfill \  f = ln u,g = 1, hfill \  f = frac{1}{u},g = u, hfill \   = frac{1}{2}(uln u - int {1{kern 1pt} {	ext{d}}u} ) hfill \   = frac{{uln u}}{2} - frac{u}{2} hfill \   = frac{{left( {{r^2} + 1} 
ight)ln left( {{r^2} + 1} 
ight)}}{2} - frac{{{r^2} + 1}}{2} + C hfill \   = frac{{left( {{r^2} + 1} 
ight)left[ {ln left( {{r^2} + 1} 
ight) - 1} 
ight]}}{2} + C hfill \  intlimits_0^1 r ln left( {1 + {r^2}} 
ight){kern 1pt} {	ext{d}}r = frac{{2ln 2 - 1}}{2} hfill \ end{gathered} ]
推薦閱讀:

積分習題及詳解13

TAG:高等數學 | 高等數學大學課程 | 微積分 |