積分練習草稿5

149.

[egin{gathered}  int {left( {sin ax - {{	ext{e}}^{frac{x}{b} + c}}} 
ight){kern 1pt} {	ext{d}}x}  hfill \   = int {sin ax{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^c}int {{{	ext{e}}^{frac{x}{b}}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{ax}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = a, hfill \   = frac{1}{a}int {sin u{kern 1pt} {	ext{d}}u}  - {{	ext{e}}^c}int {{{	ext{e}}^{frac{x}{b}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - frac{{cos ax}}{a} - {{	ext{e}}^c}int {{{	ext{e}}^{frac{x}{b}}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{b},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{b}, hfill \   =  - frac{{cos ax}}{a} - {{	ext{e}}^c}bint {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{{cos ax}}{a} - b{{	ext{e}}^{frac{x}{b} + c}} + C hfill \ end{gathered} ]

150.

egin{gathered}  int {frac{1}{{1 + sqrt {x + 1} }}} {kern 1pt} {	ext{d}}x hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = int {frac{1}{{sqrt u  + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = frac{1}{{sqrt u  + 1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - frac{1}{{2{{left( {sqrt u  + 1} 
ight)}^2}sqrt u }},sqrt u  = frac{1}{v} - 1, hfill \   = 2int {frac{{v - 1}}{{{v^2}}}{kern 1pt} {	ext{d}}v}  = 2(int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2}}}{kern 1pt} {	ext{d}}v} ) hfill \   = 2ln v + frac{2}{v} hfill \  ln frac{1}{{sqrt u  + 1}} =  - ln left( {sqrt u  + 1} 
ight), hfill \   = 2left( {sqrt u  + 1} 
ight) - 2ln left( {sqrt u  + 1} 
ight) hfill \   = 2left( {sqrt {x + 1}  + 1} 
ight) - 2ln left( {sqrt {x + 1}  + 1} 
ight) + C hfill \   = 2sqrt {x + 1}  - 2ln left( {sqrt {x + 1}  + 1} 
ight) + C hfill \ end{gathered}

151.

[egin{gathered}  int {frac{1}{{x{{ln }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{x}, hfill \   = int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  =  - frac{1}{u} hfill \   =  - frac{1}{{ln x}} + C hfill \  intlimits_{	ext{e}}^{ + infty } {frac{1}{{x{{ln }^2}x}}} {kern 1pt} {	ext{d}}x = 0 - ( - 1) = 1 hfill \ end{gathered} ]

152.

[egin{gathered}  int {sqrt {3 - 2x - {x^2}} } {kern 1pt} {	ext{d}}x = int {sqrt {4 - {{left( {x + 1} 
ight)}^2}} {kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{1}}, hfill \   = int {sqrt {4 - {u^2}} {kern 1pt} {	ext{d}}u}  hfill \  u = 2sin v,v = arcsin frac{u}{2},frac{{{	ext{d}}u}}{{{	ext{d}}v}} = 2cos v, hfill \   = int {2cos vsqrt {4 - 4{{sin }^2}v} {kern 1pt} {	ext{d}}v}  hfill \   = 4int {{{cos }^2}v{kern 1pt} {	ext{d}}v}  = 4int {frac{{cos 2v + 1}}{2}{kern 1pt} {	ext{d}}v}  hfill \   = 4(frac{1}{2}int {cos 2v{kern 1pt} {	ext{d}}v}  + frac{1}{2}int {1{kern 1pt} {	ext{d}}v} ) hfill \   = 4(frac{{sin 2v}}{4} + frac{v}{2}) hfill \   = sin 2v + 2v hfill \  sin left( {2arcsin frac{u}{2}} 
ight) = usqrt {1 - frac{{{u^2}}}{4}} , hfill \   = usqrt {1 - frac{{{u^2}}}{4}}  + 2arcsin frac{u}{2} hfill \ end{gathered} ]

[egin{gathered}   = 2arcsin frac{{x + 1}}{2} + left( {x + 1} 
ight)sqrt {1 - frac{{{{left( {x + 1} 
ight)}^2}}}{4}}  + C hfill \   = frac{{left( {x + 1} 
ight)sqrt { - {x^2} - 2x + 3}  - 4arcsin frac{{ - 2x - 2}}{4}}}{2} + C hfill \ end{gathered} ]

153.

[egin{gathered}  int {frac{1}{{sqrt x  + sqrt[4]{x}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt[4]{x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{4{x^{frac{3}{4}}}}},sqrt x  = {u^2},{x^{frac{3}{4}}} = {u^3}, hfill \   = 4int {frac{{{u^2}}}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} + {	ext{1}},{u^2} = {left( {v - 1} 
ight)^2}, hfill \   = 4int {frac{{{{left( {v - 1} 
ight)}^2}}}{v}{kern 1pt} {	ext{d}}v}  hfill \   = 4(int {v{kern 1pt} {	ext{d}}v}  + int {frac{1}{v}{kern 1pt} {	ext{d}}v}  - 2int {1{kern 1pt} {	ext{d}}v} ) hfill \   = 4(ln v + frac{{{v^2}}}{2} - 2v) hfill \   = 4left[ {ln left( {u + 1} 
ight) + frac{{{{left( {u + 1} 
ight)}^2}}}{2} - 2left( {u + 1} 
ight)} 
ight] hfill \   =  - 8left( {sqrt[4]{x} + 1} 
ight) + 2{left( {sqrt[4]{x} + 1} 
ight)^2} + 4ln left( {sqrt[4]{x} + 1} 
ight) + C hfill \ end{gathered} ]

[egin{gathered}   = 2sqrt x  - 4sqrt[4]{x} + 4ln left( {sqrt[4]{x} + 1} 
ight) + C hfill \   = 4left[ {frac{{sqrt x  - 2sqrt[4]{x}}}{2} + ln left( {sqrt[4]{x} + 1} 
ight)} 
ight] + C hfill \  #  hfill \  intlimits_0^{16} {frac{1}{{sqrt x  + sqrt[4]{x}}}} {kern 1pt} {	ext{d}}x = 4ln 3 hfill \ end{gathered} ]

154.

[egin{gathered}  int {{{sin }^3}t{kern 1pt} {	ext{d}}t}  hfill \   = int {left( {1 - {{cos }^2}t} 
ight)sin t{kern 1pt} {	ext{d}}t}  hfill \  u = cos t,frac{{{	ext{d}}u}}{{{	ext{d}}t}} =  - sin t, hfill \   = int {left( {{u^2} - 1{kern 1pt} } 
ight){	ext{d}}u}  hfill \   = int {{u^2}{kern 1pt} {	ext{d}}u}  - int {1{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{u^3}}}{3} - u hfill \   = frac{{{{cos }^3}t}}{3} - cos t + C hfill \ end{gathered} ]

155.

[egin{gathered}  int {frac{1}{{sqrt {{x^2} - x} }}{kern 1pt} {	ext{d}}x}  = int {frac{1}{{sqrt {x - 1} sqrt x }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x }}, hfill \   = 2int {frac{1}{{sqrt {{u^2} - 1} }}{kern 1pt} {	ext{d}}u}  hfill \  u = sec v,v = operatorname{arc} sec u,frac{{{	ext{d}}u}}{{{	ext{d}}v}} = sec v	an v, hfill \   = 2int {frac{{sec v	an v}}{{sqrt {{{sec }^2}v - 1} }}{kern 1pt} {	ext{d}}v}  = 2int {sec v{kern 1pt} {	ext{d}}v}  hfill \   = 2int {frac{{sec v	an v + {{sec }^2}v}}{{	an v + sec v}}{kern 1pt} {	ext{d}}v}  hfill \  w = 	an v + sec v,frac{{{	ext{d}}w}}{{{	ext{d}}v}} = sec v	an v + {sec ^2}v, hfill \   = 2int {frac{1}{w}{kern 1pt} {	ext{d}}w}  = 2ln w = 2ln left( {	an v + sec v} 
ight) hfill \ end{gathered} ]

[egin{gathered}  	an left( {operatorname{arc} sec u} 
ight) = sqrt {{u^2} - 1} ,sec left( {operatorname{arc} sec u} 
ight) = u, hfill \   = 2ln left( {sqrt {{u^2} - 1}  + u} 
ight) = 2ln left( {sqrt x  + sqrt {x - 1} } 
ight) + C hfill \   = ln left| {2sqrt {{x^2} - x}  + 2x - 1} 
ight| + C hfill \  #  hfill \  intlimits_1^{frac{3}{2}} {frac{1}{{sqrt {{x^2} - x} }}} {kern 1pt} {	ext{d}}x = frac{{ln left( {4sqrt 3  + 7} 
ight)}}{2} hfill \ end{gathered} ]

156.

[egin{gathered}  int {sqrt {{{	ext{e}}^x} - 1} {kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x} - 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {{	ext{e}}^x}, hfill \   = int {frac{{sqrt u }}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  v = sqrt u ,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{{2sqrt u }},u = {v^2}, hfill \   = 2int {frac{{{v^2}}}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  hfill \   = 2(int {1{kern 1pt} {	ext{d}}v}  - int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v} ) hfill \   = 2v - 2arctan v hfill \   = 2sqrt u  - 2arctan sqrt u  hfill \   = 2sqrt {{{	ext{e}}^x} - 1}  - 2arctan sqrt {{{	ext{e}}^x} - 1}  + C hfill \  #  hfill \  intlimits_0^{ln 2} {sqrt {{{	ext{e}}^x} - 1} } {kern 1pt} {	ext{d}}x =  - frac{{pi  - 4}}{2} hfill \ end{gathered} ]

157.

[egin{gathered}  int {{{cos }^2}x{{sin }^3}x{kern 1pt} {	ext{d}}x}  hfill \   = int { - frac{{sin 5x - 3left( {sin 3x - sin x} 
ight) + 2sin 3x - 5sin x}}{{16}}{kern 1pt} {	ext{d}}x}  hfill \   =  - frac{1}{{16}}int {sin 5x{kern 1pt} {	ext{d}}x}  + frac{1}{{16}}int {sin 3x{	ext{d}}x}  + frac{1}{8}int {sin x{kern 1pt} {	ext{d}}x}  hfill \   = frac{{cos 5x}}{{80}} - frac{{cos 3x}}{{48}} - frac{{cos x}}{8} + C hfill \   = frac{{3{{cos }^5}x - 5{{cos }^3}x}}{{15}} + C hfill \   = frac{{{{cos }^3}xleft( {3{{cos }^2}x - 5} 
ight)}}{{15}} + C hfill \ end{gathered} ]

158.

[egin{gathered}  int {frac{1}{{1 + 2{x^2}}}} {kern 1pt} {	ext{d}}x hfill \  u = sqrt 2 x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = sqrt 2 , hfill \   = frac{1}{{sqrt 2 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{arctan u}}{{sqrt 2 }} hfill \   = frac{{sqrt 2 arctan sqrt 2 x}}{2} + C hfill \ end{gathered} ]

159.

[egin{gathered}  int {sqrt {{pi ^2} - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  x = pi sin u,u = arcsin frac{x}{pi },frac{{{	ext{d}}x}}{{{	ext{d}}u}} = pi cos u, hfill \   = int {pi cos usqrt {{pi ^2} - {pi ^2}{{sin }^2}u} {kern 1pt} {	ext{d}}u}  hfill \   = {pi ^2}int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = {pi ^2}int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = {pi ^2}(frac{1}{2}int {cos 2u{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {1{kern 1pt} {	ext{d}}u} ) hfill \   = frac{{{pi ^2}sin 2u}}{4} + frac{{{pi ^2}u}}{2} hfill \  sin left( {2arcsin frac{x}{pi }} 
ight) = frac{{2xsqrt {1 - frac{{{x^2}}}{{{pi ^2}}}} }}{pi }, hfill \ end{gathered} ]

[egin{gathered}   = frac{{{pi ^2}arcsin frac{x}{pi }}}{2} + frac{{pi xsqrt {1 - frac{{{x^2}}}{{{pi ^2}}}} }}{2} + C hfill \   = frac{{{pi ^2}arcsin frac{x}{pi } + xsqrt {{pi ^2} - {x^2}} }}{2} + C hfill \  intlimits_0^pi  {sqrt {{pi ^2} - {x^2}} } {kern 1pt} {	ext{d}}x = frac{{{pi ^3}}}{4} hfill \ end{gathered} ]

160.

[egin{gathered}  int {frac{{{x^3}}}{{9 + {x^2}}}} {kern 1pt} {	ext{d}}x hfill \  u = frac{1}{{{x^2} + 9}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{{2x}}{{{{left( {{x^2} + 9} 
ight)}^2}}}, hfill \  {x^2} = frac{1}{u} - 9, hfill \   = frac{1}{2}int {frac{{9u - 1}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{2}(9int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u} ) hfill \   = frac{{9ln u}}{2} + frac{1}{{2u}} hfill \   = frac{{{x^2} + 9}}{2} - frac{{9ln left( {{x^2} + 9} 
ight)}}{2} + C hfill \   = frac{{{x^2} - 9ln left( {{x^2} + 9} 
ight)}}{2} + C hfill \ end{gathered} ]

161.

[egin{gathered}  int {{{sin }^4}x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{cos 4x - 4cos 2x + 3}}{8}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{8}int {cos 4x{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {cos 2x{kern 1pt} {	ext{d}}x}  + frac{3}{8}int {1{kern 1pt} {	ext{d}}x}  hfill \   = frac{{sin 4x}}{{32}} - frac{{sin 2x}}{4} + frac{{3x}}{8} + C hfill \   = frac{{sin 4x - 8sin 2x + 12x}}{{32}} + C hfill \ end{gathered} ]

162.

[egin{gathered}  int {left( {4sqrt {1 - {x^2}}  - 2xsqrt {1 - {x^2}} {kern 1pt} } 
ight){	ext{d}}x}  hfill \   = 4int {sqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x}  - 2int {xsqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  u = 1 - {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 2x, hfill \   = 4int {sqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x}  - 2 	imes ( - frac{1}{2}int {sqrt u {kern 1pt} {	ext{d}}u} ) hfill \   = 4int {sqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x}  + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \  x = sin u,u = arcsin x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = cos u, hfill \   = 4int {cos usqrt {1 - {{sin }^2}u} {kern 1pt} {	ext{d}}u}  + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \   = 4int {{{cos }^2}u{kern 1pt} {	ext{d}}u}  + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \ end{gathered} ]

[egin{gathered}   = 4int {frac{{cos 2u + 1}}{2}{kern 1pt} {	ext{d}}u}  + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \   = 4(frac{{sin 2u}}{4} + frac{u}{2}) + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \  sin left( {2arcsin x} 
ight) = 2xsqrt {1 - {x^2}} , hfill \   = 4(frac{{arcsin x}}{2} + frac{{xsqrt {1 - {x^2}} }}{2}) + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} hfill \   = 2arcsin x + frac{{2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} + 2xsqrt {1 - {x^2}}  + C hfill \   = frac{{6arcsin x + 2{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}} + 6xsqrt {1 - {x^2}} }}{3} + C hfill \ end{gathered} ]

163.

[egin{gathered}  int {frac{{{y^3}}}{{{{left( {1 + {x^2} + {y^4}} 
ight)}^2}}}{kern 1pt} {	ext{d}}y}  hfill \  u = {y^4} + {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}y}} = 4{y^3}, hfill \   = frac{1}{4}int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  =  - frac{1}{{4u}} hfill \   =  - frac{1}{{4left( {{y^4} + {x^2} + 1} 
ight)}} + C hfill \   Rightarrow  hfill \  int_0^{sqrt x } {frac{{{y^3}}}{{{{left( {{y^4} + {x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}y}  =  - frac{1}{{4left( {2{x^2} + 1} 
ight)}} + frac{1}{{4left( {{x^2} + 1} 
ight)}} hfill \  #  hfill \  int {left[ {frac{1}{{4left( {{x^2} + 1} 
ight)}} - frac{1}{{4left( {2{x^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}x} 
ight]}  hfill \   = frac{1}{4}int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{4}int {frac{1}{{2{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \ end{gathered} ]

[egin{gathered}  u = sqrt 2 x, hfill \   = frac{1}{4}arctan x - frac{1}{{sqrt 2 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{arctan x}}{4} - frac{{arctan sqrt 2 x}}{{{2^{frac{5}{2}}}}} + C hfill \  intlimits_0^{ + infty } {left[ { - frac{1}{{4left( {2{x^2} + 1} 
ight)}} + frac{1}{{4left( {{x^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}x} 
ight]}  = frac{{left( {sqrt 2  - 1} 
ight)pi }}{{{2^{frac{7}{2}}}}} hfill \   Rightarrow  hfill \  int_0^{ + infty } {dx} int_0^{sqrt x } {frac{{{y^3}}}{{{{left( {1 + {x^2} + {y^4}} 
ight)}^2}}}{kern 1pt} {	ext{d}}y}  = frac{{left( {sqrt 2  - 1} 
ight)pi }}{{{2^{frac{7}{2}}}}} hfill \ end{gathered} ]

164.

[egin{gathered}  int {cos 3xsin 3x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{sin 6x}}{2}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{6x}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 6, hfill \   = frac{1}{{12}}int {sin u{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{{cos u}}{{12}} hfill \   =  - frac{{cos 6x}}{{12}} + C hfill \   =  - frac{{{{cos }^2}3x}}{6} + C hfill \ end{gathered} ]

165.

[egin{gathered}  int {frac{{sqrt x }}{{1 + sqrt x }}} {kern 1pt} {	ext{d}}x hfill \   = int {1{kern 1pt} {	ext{d}}x}  - int {frac{1}{{sqrt x  + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{1}{{sqrt x  + 1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{2{{left( {sqrt x  + 1} 
ight)}^2}sqrt x }},sqrt x  = frac{1}{u} - 1, hfill \   = x - 2int {frac{{u - 1}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   = x - 2(int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u} ) hfill \   = x - 2ln u - frac{2}{u} hfill \  ln frac{1}{{sqrt x  + 1}} =  - ln left( {sqrt x  + 1} 
ight), hfill \   = x - 2left( {sqrt x  + 1} 
ight) + 2ln left( {sqrt x  + 1} 
ight) + C hfill \   = x - 2sqrt x  + 2ln left( {sqrt x  + 1} 
ight) + C hfill \  intlimits_0^1 {frac{{sqrt x }}{{1 + sqrt x }}} {kern 1pt} {	ext{d}}x = 2ln left( 2 
ight) - 1 hfill \ end{gathered} ]

166.

[egin{gathered}  int {cos } x{{	ext{e}}^{ - x}}{kern 1pt} {	ext{d}}x hfill \  u = cos x,v = {{	ext{e}}^{ - x}}, hfill \  u =  - sin x,v =  - {{	ext{e}}^{ - x}}, hfill \   =  - int {{{	ext{e}}^{ - x}}sin x{kern 1pt} {	ext{d}}x}  - {{	ext{e}}^{ - x}}cos x hfill \  u =  - sin x,v =  - {{	ext{e}}^{ - x}}, hfill \  u =  - cos x,v = {{	ext{e}}^{ - x}}, hfill \   = int { - {{	ext{e}}^{ - x}}cos x{kern 1pt} {	ext{d}}x}  + {{	ext{e}}^{ - x}}sin x - {{	ext{e}}^{ - x}}cos x hfill \   =  - int {{{	ext{e}}^{ - x}}cos x{kern 1pt} {	ext{d}}x}  + {{	ext{e}}^{ - x}}sin x - {{	ext{e}}^{ - x}}cos x hfill \   Rightarrow  hfill \   = frac{{{{	ext{e}}^{ - x}}sin x - {{	ext{e}}^{ - x}}cos x}}{2} + C hfill \   = frac{{{{	ext{e}}^{ - x}}left( {sin x - cos x} 
ight)}}{2} + C hfill \ end{gathered} ]

167.

[egin{gathered}  int {frac{{sqrt {{x^2} + 1} }}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} + 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = int {frac{{{u^2}}}{{{u^2} - 1}}{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{{u^2} - 1}}{kern 1pt} {	ext{d}}u}  + int {1{kern 1pt} {	ext{d}}u}  hfill \   = int {frac{1}{{left( {u - 1} 
ight)left( {u + 1} 
ight)}}{kern 1pt} {	ext{d}}u}  + u hfill \  frac{1}{{{u^2} - 1}} = frac{A}{{u - 1}} + frac{B}{{u + 1}}, hfill \   = frac{1}{2}int {frac{1}{{u - 1}}{kern 1pt} {	ext{d}}u}  - frac{1}{2}int {frac{1}{{u + 1}}{kern 1pt} {	ext{d}}u}  + u hfill \   = frac{{ln left( {u - 1} 
ight)}}{2} - frac{{ln left( {u + 1} 
ight)}}{2} + u hfill \   = frac{{ln left| {sqrt {{x^2} + 1}  - 1} 
ight|}}{2} - frac{{ln left( {sqrt {{x^2} + 1}  + 1} 
ight)}}{2} + sqrt {{x^2} + 1}  + C hfill \ end{gathered} ]

[ = frac{{ln left| {sqrt {{x^2} + 1}  - 1} 
ight| - ln left( {sqrt {{x^2} + 1}  + 1} 
ight)}}{2} + sqrt {{x^2} + 1}  + C]

[intlimits_{sqrt 3 }^{sqrt 8 } {frac{{sqrt {{x^2} + 1} }}{x}} {kern 1pt} {	ext{d}}x = frac{{ln 3 - ln 2 + 2}}{2}]

168.

[egin{gathered}  int {frac{x}{{left( {2 - {x^2}} 
ight)sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x hfill \   =  - int {frac{x}{{sqrt {1 - {x^2}} left( {{x^2} - 2} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {1 - {x^2}} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{x}{{sqrt {1 - {x^2}} }}, hfill \   =  - int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   =  - arctan u hfill \   =  - arctan sqrt {1 - {x^2}}  + C hfill \  intlimits_0^1 {frac{x}{{left( {2 - {x^2}} 
ight)sqrt {1 - {x^2}} }}} {kern 1pt} {	ext{d}}x = frac{pi }{4} hfill \ end{gathered} ]

169.

[egin{gathered}  int {frac{{ln x - 1}}{x}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x - 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{x}, hfill \   = int {u{kern 1pt} {	ext{d}}u}  = frac{{{u^2}}}{2} hfill \   = frac{{{{left( {ln x - 1} 
ight)}^2}}}{2} + C hfill \ end{gathered} ]

170.

[egin{gathered}  int {frac{{ln x - 1}}{{{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \  u = ln x - 1,v = frac{1}{{{x^2}}}, hfill \  u = frac{1}{x},v =  - frac{1}{x}, hfill \   =  - frac{{ln x - 1}}{x} - int { - frac{1}{{{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - frac{{ln x - 1}}{x} - frac{1}{x} + C hfill \   =  - frac{{ln x}}{x} + C hfill \ end{gathered} ]

171.

[egin{gathered}  int_{ - frac{pi }{4}}^{frac{pi }{4}} {frac{{1 + 	an u}}{{{{sec }^2}u}}du}  hfill \   = int_{ - frac{pi }{4}}^{frac{pi }{4}} {frac{{	an u}}{{{{sec }^2}u}}{kern 1pt} {	ext{d}}u}  + int_{ - frac{pi }{4}}^{frac{pi }{4}} {frac{1}{{{{sec }^2}u}}{kern 1pt} {	ext{d}}u}  hfill \   = int_{ - frac{pi }{4}}^{frac{pi }{4}} {{{cos }^2}u{kern 1pt} {	ext{d}}u}  = 2int_0^{frac{pi }{4}} {{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \ end{gathered} ]

172.

[egin{gathered}  int {frac{1}{{{{left( {9 - {x^2}} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  x = 3sin u,u = arcsin frac{x}{3},frac{{{	ext{d}}x}}{{{	ext{d}}u}} = 3cos u, hfill \   = int {frac{{3cos u}}{{{{left( {9 - 9{{sin }^2}u} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{9}int {frac{1}{{{{cos }^2}u}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{9}int {{{sec }^2}u{kern 1pt} {	ext{d}}u}  = frac{1}{9}	an u hfill \  	an left( {arcsin frac{x}{3}} 
ight) = frac{x}{{3sqrt {1 - frac{{{x^2}}}{9}} }}, hfill \   = frac{x}{{27sqrt {1 - frac{{{x^2}}}{9}} }} + C hfill \   = frac{x}{{9sqrt {9 - {x^2}} }} + C hfill \  intlimits_0^{frac{3}{2}} {frac{1}{{{{left( {9 - {x^2}} 
ight)}^{frac{3}{2}}}}}} {kern 1pt} {	ext{d}}x = frac{1}{{{3^{frac{5}{2}}}}} hfill \ end{gathered} ]

173.

[egin{gathered}  int {frac{1}{{3 + 2x}}} {kern 1pt} {	ext{d}}x hfill \  {	ext{u}} = {	ext{2x}} + {	ext{3}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2, hfill \   = frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = frac{{ln u}}{2} hfill \   = frac{{ln left| {2x + 3} 
ight|}}{2} + C hfill \ end{gathered} ]

174.

[egin{gathered}  int {{x^3}sin {x^2}{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{1}{2}int {usin u{kern 1pt} {	ext{d}}u}  hfill \  f = {	ext{u}},g = sin u, hfill \  f = 1,g =  - cos u, hfill \   = frac{1}{2}( - int { - cos u{kern 1pt} {	ext{d}}u}  - ucos u) hfill \   = frac{{sin u}}{2} - frac{{ucos u}}{2} hfill \   = frac{{sin {x^2}}}{2} - frac{{{x^2}cos {x^2}}}{2} + C hfill \   = frac{{sin {x^2} - {x^2}cos {x^2}}}{2} + C hfill \  intlimits_{ - 1}^1 {{x^3}} sin {x^2}{kern 1pt} {	ext{d}}x = 0 hfill \ end{gathered} ]

175.

[egin{gathered}  int {xsqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x}  hfill \  u = 1 - {x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 2x, hfill \   =  - frac{1}{2}int {sqrt u {kern 1pt} {	ext{d}}u}  =  - frac{{{u^{frac{3}{2}}}}}{3} hfill \   =  - frac{{{{left( {1 - {x^2}} 
ight)}^{frac{3}{2}}}}}{3} + C hfill \  intlimits_{ - 1}^0 x sqrt {1 - {x^2}} {kern 1pt} {	ext{d}}x =  - frac{1}{3} hfill \ end{gathered} ]

176.

[egin{gathered}  int {frac{1}{{xsqrt {{x^2} - 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} - 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} - 1} }}, hfill \   = int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = arctan u hfill \   = arctan sqrt {{x^2} - 1}  + C hfill \ end{gathered} ]

177.

[egin{gathered}  int {frac{1}{{{{cos }^2}xsqrt {	an x + 1} }}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{{sec }^2}x}}{{sqrt {	an x + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  = 2sqrt u  hfill \   = 2sqrt {	an x + 1}  + C hfill \ end{gathered} ]

[egin{gathered}  #  hfill \  int {frac{{ln sin x}}{{{{cos }^2}x}}{kern 1pt} {	ext{d}}x}  hfill \  u = ln sin x,v = frac{1}{{{{cos }^2}x}}, hfill \  u = frac{{cos x}}{{sin x}},v = 	an x, hfill \   = 	an xln sin x - int {frac{{cos x	an x}}{{sin x}}{kern 1pt} {	ext{d}}x}  hfill \   = 	an xln sin x - int {1{kern 1pt} {	ext{d}}x}  hfill \   = 	an xln sin x - x + C hfill \ end{gathered} ]

178.

[egin{gathered}  int {frac{{x - 5}}{{{x^3} - 3{x^2} + 4}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{x - 5}}{{{{left( {x - 2} 
ight)}^2}left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{{x - 5}}{{{{left( {x - 2} 
ight)}^2}left( {x + 1} 
ight)}} = frac{A}{{x - 2}} + frac{B}{{{{left( {x - 2} 
ight)}^2}}} + frac{C}{{x + 1}}, hfill \   = int {left[ { - frac{2}{{3left( {x + 1} 
ight)}} + frac{2}{{3left( {x - 2} 
ight)}} - frac{1}{{{{left( {x - 2} 
ight)}^2}}}} 
ight]{kern 1pt} {	ext{d}}x}  hfill \   =  - frac{2}{3}int {frac{1}{{x + 1}}{kern 1pt} {	ext{d}}x}  + frac{2}{3}int {frac{1}{{x - 2}}{kern 1pt} {	ext{d}}x}  - int {frac{1}{{{{left( {x - 2} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - frac{{2ln left| {x + 1} 
ight|}}{3} + frac{1}{{x - 2}} + frac{{2ln left| {x - 2} 
ight|}}{3} + C hfill \ end{gathered} ]

179.

[egin{gathered}  int {frac{x}{{sqrt {{x^2} + 1}  + sqrt[3]{{{x^2} + 1}}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt[6]{{{x^2} + 1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{3{{left( {{x^2} + 1} 
ight)}^{frac{5}{6}}}}}, hfill \   = 3int {frac{{{u^3}}}{{u + 1}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{u}} + {	ext{1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 1,{u^3} = {left( {v - 1} 
ight)^3}, hfill \   = 3int {frac{{{{left( {v - 1} 
ight)}^3}}}{v}{kern 1pt} {	ext{d}}v}  hfill \   = 3(int {{v^2}{kern 1pt} {	ext{d}}v}  - 3int {v{kern 1pt} {	ext{d}}v}  - int {frac{1}{v}{kern 1pt} {	ext{d}}v}  + 3int {1{kern 1pt} {	ext{d}}v} ) hfill \   = 3( - ln v + frac{{{v^3}}}{3} - frac{{3{v^2}}}{2} + 3v) hfill \ end{gathered} ]

[egin{gathered}   = 3left[ { - ln left( {u + 1} 
ight) + frac{{{{left( {u + 1} 
ight)}^3}}}{3} - frac{{3{{left( {u + 1} 
ight)}^2}}}{2} + 3left( {u + 1} 
ight)} 
ight] hfill \   =  - 3ln left( {u + 1} 
ight) + {left( {u + 1} 
ight)^3} - frac{{9{{left( {u + 1} 
ight)}^2}}}{2} + 9left( {u + 1} 
ight) hfill \   =  - 3ln left( {sqrt[6]{{{x^2} + 1}} + 1} 
ight) + {left( {sqrt[6]{{{x^2} + 1}} + 1} 
ight)^3} - frac{{9{{left( {sqrt[6]{{{x^2} + 1}} + 1} 
ight)}^2}}}{2} hfill \   + 9left( {sqrt[6]{{{x^2} + 1}} + 1} 
ight) + C hfill \   =  - 3ln left( {sqrt[6]{{{x^2} + 1}} + 1} 
ight) + sqrt {{x^2} + 1}  - frac{{3sqrt[3]{{{x^2} + 1}}}}{2} + 3sqrt[6]{{{x^2} + 1}} + C hfill \ end{gathered} ]

180.

[egin{gathered}  int {frac{1}{{left( {{x^2} + 1} 
ight)left( {{x^2} + x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{left( {{x^2} + 1} 
ight)left( {{x^2} + x + 1} 
ight)}} = frac{{Ax + B}}{{{x^2} + 1}} + frac{{Cx + D}}{{{x^2} + x + 1}}, hfill \   = int {frac{{x + 1}}{{{x^2} + x + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{x}} + {	ext{1}} = frac{1}{2}(2{	ext{x}} + {	ext{1) + }}frac{1}{2},u = {x^2} + 1, hfill \   = frac{1}{2}int {frac{{2x + 1}}{{{x^2} + x + 1}}{kern 1pt} {	ext{d}}x}  + frac{1}{2}int {frac{1}{{{x^2} + x + 1}}{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  hfill \  v = {x^2} + x + 1, hfill \   = frac{1}{2}int {frac{1}{v}{kern 1pt} {	ext{d}}v}  + frac{1}{2}int {frac{1}{{{{left( {x + frac{1}{2}} 
ight)}^2} + frac{3}{4}}}{kern 1pt} {	ext{d}}x}  - frac{{ln u}}{2} hfill \ end{gathered} ]

[egin{gathered}  w = frac{{2x + 1}}{{sqrt 3 }}, hfill \   = frac{{ln left( {{x^2} + x + 1} 
ight)}}{2} + frac{1}{2} 	imes frac{2}{{sqrt 3 }}int {frac{1}{{{w^2} + 1}}{kern 1pt} {	ext{d}}w}  - frac{{ln left( {{x^2} + 1} 
ight)}}{2} hfill \   = frac{{ln left| {{x^2} + x + 1} 
ight|}}{2} - frac{{ln left( {{x^2} + 1} 
ight)}}{2} + frac{{arctan frac{{2x + 1}}{{sqrt 3 }}}}{{sqrt 3 }} + C hfill \ end{gathered} ]

181.

[egin{gathered}  int {frac{1}{{{{arctan }^2}xleft( {1 + {x^2}} 
ight)}}} {kern 1pt} {	ext{d}}x hfill \  u = arctan x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{{x^2} + 1}}, hfill \   = int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  hfill \   =  - frac{1}{{arctan x}} + C hfill \ end{gathered} ]
推薦閱讀:

積分習題及詳解13
積分練習草稿7

TAG:高等數學 | 高等數學大學課程 | 微積分 |