標籤:

Python 語法速覽與實戰清單

本文是對於 現代 Python 開發:語法基礎與工程實踐的總結,更多 Python 相關資料參考 Python 學習與實踐資料索引;本文參考了 Python Crash Course - Cheat Sheets,pysheeet 等。本文僅包含筆者在日常工作中經常使用的,並且認為較為關鍵的知識點與語法,如果想要進一步學習 Python 相關內容或者對於機器學習與數據挖掘方向感興趣,可以參考程序猿的數據科學與機器學習實戰手冊。

基礎語法

Python 是一門高階、動態類型的多範式編程語言;定義 Python 文件的時候我們往往會先聲明文件編碼方式:

# 指定腳本調用方式#!/usr/bin/env python# 配置 utf-8 編碼# -*- coding: utf-8 -*-# 配置其他編碼# -*- coding: <encoding-name> -*-# Vim 中還可以使用如下方式# vim:fileencoding=<encoding-name>

人生苦短,請用 Python,大量功能強大的語法糖的同時讓很多時候 Python 代碼看上去有點像偽代碼。譬如我們用 Python 實現的簡易的快排相較於 Java 會顯得很短小精悍:

def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) / 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right) print quicksort([3,6,8,10,1,2,1])# Prints "[1, 1, 2, 3, 6, 8, 10]"

控制台交互

可以根據 __name__ 關鍵字來判斷是否是直接使用 python 命令執行某個腳本,還是外部引用;Google 開源的 fire 也是不錯的快速將某個類封裝為命令行工具的框架:

import fireclass Calculator(object): """A simple calculator class.""" def double(self, number): return 2 * numberif __name__ == __main__: fire.Fire(Calculator)# python calculator.py double 10 # 20# python calculator.py double --number=15 # 30

Python 2 中 print 是表達式,而 Python 3 中 print 是函數;如果希望在 Python 2 中將 print 以函數方式使用,則需要自定義引入:

from __future__ import print_function

我們也可以使用 pprint 來美化控制台輸出內容:

import pprintstuff = [spam, eggs, lumberjack, knights, ni]pprint.pprint(stuff)# 自定義參數pp = pprint.PrettyPrinter(depth=6)tup = (spam, (eggs, (lumberjack, (knights, (ni, (dead,(parrot, (fresh fruit,))))))))pp.pprint(tup)

模塊

Python 中的模塊(Module)即是 Python 源碼文件,其可以導出類、函數與全局變數;當我們從某個模塊導入變數時,函數名往往就是命名空間(Namespace)。而 Python 中的包(Package)則是模塊的文件夾,往往由 __init__.py 指明某個文件夾為包:

# 文件目錄someDir/ main.py siblingModule.py# siblingModule.pydef siblingModuleFun(): print(Hello from siblingModuleFun) def siblingModuleFunTwo(): print(Hello from siblingModuleFunTwo)import siblingModuleimport siblingModule as sibModsibMod.siblingModuleFun()from siblingModule import siblingModuleFunsiblingModuleFun()try: # Import someModuleA that is only available in Windows import someModuleAexcept ImportError: try: # Import someModuleB that is only available in Linux import someModuleB except ImportError:

Package 可以為某個目錄下所有的文件設置統一入口:

someDir/ main.py subModules/ __init__.py subA.py subSubModules/ __init__.py subSubA.py# subA.pydef subAFun(): print(Hello from subAFun) def subAFunTwo(): print(Hello from subAFunTwo)# subSubA.pydef subSubAFun(): print(Hello from subSubAFun) def subSubAFunTwo(): print(Hello from subSubAFunTwo)# __init__.py from subDir# Adds subAFun() and subAFunTwo() to the subDir namespace from .subA import *# The following two import statement do the same thing, they add subSubAFun() and subSubAFunTwo() to the subDir namespace. The first one assumes __init__.py is empty in subSubDir, and the second one, assumes __init__.py in subSubDir contains from .subSubA import *.# Assumes __init__.py is empty in subSubDir# Adds subSubAFun() and subSubAFunTwo() to the subDir namespacefrom .subSubDir.subSubA import *# Assumes __init__.py in subSubDir has from .subSubA import *# Adds subSubAFun() and subSubAFunTwo() to the subDir namespacefrom .subSubDir import *# __init__.py from subSubDir# Adds subSubAFun() and subSubAFunTwo() to the subSubDir namespacefrom .subSubA import *# main.pyimport subDirsubDir.subAFun() # Hello from subAFunsubDir.subAFunTwo() # Hello from subAFunTwosubDir.subSubAFun() # Hello from subSubAFunsubDir.subSubAFunTwo() # Hello from subSubAFunTwo

表達式與控制流

條件選擇

Python 中使用 if、elif、else 來進行基礎的條件選擇操作:

if x < 0: x = 0 print(Negative changed to zero) elif x == 0: print(Zero) else: print(More)

Python 同樣支持 ternary conditional operator:

a if condition else b

也可以使用 Tuple 來實現類似的效果:

# test 需要返回 True 或者 False(falseValue, trueValue)[test]# 更安全的做法是進行強制判斷(falseValue, trueValue)[test == True]# 或者使用 bool 類型轉換函數(falseValue, trueValue)[bool(<expression>)]

循環遍歷

for-in 可以用來遍曆數組與字典:

words = [cat, window, defenestrate]for w in words: print(w, len(w))# 使用數組訪問操作符,能夠迅速地生成數組的副本for w in words[:]: if len(w) > 6: words.insert(0, w)# words -> [defenestrate, cat, window, defenestrate]

如果我們希望使用數字序列進行遍歷,可以使用 Python 內置的 range 函數:

a = [Mary, had, a, little, lamb]for i in range(len(a)): print(i, a[i])

基本數據類型

可以使用內建函數進行強制類型轉換(Casting):

int(str)float(str)str(int)str(float)

Number: 數值類型

x = 3print type(x) # Prints "<type int>"print x # Prints "3"print x + 1 # Addition; prints "4"print x - 1 # Subtraction; prints "2"print x * 2 # Multiplication; prints "6"print x ** 2 # Exponentiation; prints "9"x += 1print x # Prints "4"x *= 2print x # Prints "8"y = 2.5print type(y) # Prints "<type float>"print y, y + 1, y * 2, y ** 2 # Prints "2.5 3.5 5.0 6.25"

布爾類型

Python 提供了常見的邏輯操作符,不過需要注意的是 Python 中並沒有使用 &&、|| 等,而是直接使用了英文單詞。

t = Truef = Falseprint type(t) # Prints "<type bool>"print t and f # Logical AND; prints "False"print t or f # Logical OR; prints "True"print not t # Logical NOT; prints "False"print t != f # Logical XOR; prints "True"

String: 字元串

Python 2 中支持 Ascii 碼的 str() 類型,獨立的 unicode() 類型,沒有 byte 類型;而 Python 3 中默認的字元串為 utf-8 類型,並且包含了 byte 與 bytearray 兩個位元組類型:

type("Guido") # string type is str in python2# <type str># 使用 __future__ 中提供的模塊來降級使用 Unicodefrom __future__ import unicode_literalstype("Guido") # string type become unicode# <type unicode>

Python 字元串支持分片、模板字元串等常見操作:

var1 = Hello World!var2 = "Python Programming"print "var1[0]: ", var1[0]print "var2[1:5]: ", var2[1:5]# var1[0]: H# var2[1:5]: ythoprint "My name is %s and weight is %d kg!" % (Zara, 21)# My name is Zara and weight is 21 kg!str[0:4]len(str)string.replace("-", " ")",".join(list)"hi {0}".format(j)str.find(",")str.index(",") # same, but raises IndexErrorstr.count(",")str.split(",")str.lower()str.upper()str.title()str.lstrip()str.rstrip()str.strip()str.islower()# 移除所有的特殊字元re.sub([^A-Za-z0-9]+, , mystring)

如果需要判斷是否包含某個子字元串,或者搜索某個字元串的下標:

# in 操作符可以判斷字元串if "blah" not in somestring: continue# find 可以搜索下標s = "This be a string"if s.find("is") == -1: print "No is here!"else: print "Found is in the string."

Regex: 正則表達式

import re# 判斷是否匹配re.match(r^[aeiou], str)# 以第二個參數指定的字元替換原字元串中內容re.sub(r^[aeiou], ?, str)re.sub(r(xyz), r1, str)# 編譯生成獨立的正則表達式對象expr = re.compile(r^...$)expr.match(...)expr.sub(...)

下面列舉了常見的表達式使用場景:

# 檢測是否為 HTML 標籤re.search(<[^/>][^>]*>, <a href="#label">)# 常見的用戶名密碼re.match(^[a-zA-Z0-9-_]{3,16}$, Foo) is not Nonere.match(^w|[-_]{3,16}$, Foo) is not None# Emailre.match(^([a-z0-9_.-]+)@([da-z.-]+).([a-z.]{2,6})$, hello.world@example.com)# Urlexp = re.compile(r^(https?://)? # match http or https ([da-z.-]+) # match domain .([a-z.]{2,6}) # match domain ([/w .-]*)/?$ # match api or file , re.X)exp.match(www.google.com)# IP 地址exp = re.compile(r^(?:(?:25[0-5] |2[0-4][0-9] |[1]?[0-9][0-9]?).){3} (?:25[0-5] |2[0-4][0-9] |[1]?[0-9][0-9]?)$, re.X)exp.match(192.168.1.1)

集合類型

List: 列表

Operation: 創建增刪

list 是基礎的序列類型:

l = []l = list()# 使用字元串的 split 方法,可以將字元串轉化為列表str.split(".")# 如果需要將數組拼裝為字元串,則可以使用 join list1 = [1, 2, 3]str1 = .join(list1)# 如果是數值數組,則需要先進行轉換list1 = [1, 2, 3]str1 = .join(str(e) for e in list1)

可以使用 append 與 extend 向數組中插入元素或者進行數組連接

x = [1, 2, 3]x.append([4, 5]) # [1, 2, 3, [4, 5]]x.extend([4, 5]) # [1, 2, 3, 4, 5],注意 extend 返回值為 None

可以使用 pop、slices、del、remove 等移除列表中元素:

myList = [10,20,30,40,50]# 彈出第二個元素myList.pop(1) # 20# myList: myList.pop(1)# 如果不加任何參數,則默認彈出最後一個元素myList.pop()# 使用 slices 來刪除某個元素a = [ 1, 2, 3, 4, 5, 6 ]index = 3 # Only Positive indexa = a[:index] + a[index+1 :]# 根據下標刪除元素myList = [10,20,30,40,50]rmovIndxNo = 3del myList[rmovIndxNo] # myList: [10, 20, 30, 50]# 使用 remove 方法,直接根據元素刪除letters = ["a", "b", "c", "d", "e"]numbers.remove(numbers[1])print(*letters) # used a * to make it unpack you dont have to

Iteration: 索引遍歷

你可以使用基本的 for 循環來遍曆數組中的元素,就像下面介個樣紙:

animals = [cat, dog, monkey]for animal in animals: print animal# Prints "cat", "dog", "monkey", each on its own line.

如果你在循環的同時也希望能夠獲取到當前元素下標,可以使用 enumerate 函數:

animals = [cat, dog, monkey]for idx, animal in enumerate(animals): print #%d: %s % (idx + 1, animal)# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

Python 也支持切片(Slices):

nums = range(5) # range is a built-in function that creates a list of integersprint nums # Prints "[0, 1, 2, 3, 4]"print nums[2:4] # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"print nums[2:] # Get a slice from index 2 to the end; prints "[2, 3, 4]"print nums[:2] # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"print nums[:] # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"print nums[:-1] # Slice indices can be negative; prints ["0, 1, 2, 3]"nums[2:4] = [8, 9] # Assign a new sublist to a sliceprint nums # Prints "[0, 1, 8, 9, 4]"

Comprehensions: 變換

Python 中同樣可以使用 map、reduce、filter,map 用於變換數組:

# 使用 map 對數組中的每個元素計算平方items = [1, 2, 3, 4, 5]squared = list(map(lambda x: x**2, items))# map 支持函數以數組方式連接使用def multiply(x): return (x*x)def add(x): return (x+x)funcs = [multiply, add]for i in range(5): value = list(map(lambda x: x(i), funcs)) print(value)

reduce 用於進行歸納計算:

# reduce 將數組中的值進行歸納from functools import reduceproduct = reduce((lambda x, y: x * y), [1, 2, 3, 4])# Output: 24

filter 則可以對數組進行過濾:

number_list = range(-5, 5)less_than_zero = list(filter(lambda x: x < 0, number_list))print(less_than_zero)# Output: [-5, -4, -3, -2, -1]

字典類型

創建增刪

d = {cat: cute, dog: furry} # 創建新的字典print d[cat] # 字典不支持點(Dot)運算符取值

如果需要合併兩個或者多個字典類型:

# python 3.5z = {**x, **y}# python 2.7def merge_dicts(*dict_args): """ Given any number of dicts, shallow copy and merge into a new dict, precedence goes to key value pairs in latter dicts. """ result = {} for dictionary in dict_args: result.update(dictionary) return result

索引遍歷

可以根據鍵來直接進行元素訪問:

# Python 中對於訪問不存在的鍵會拋出 KeyError 異常,需要先行判斷或者使用 getprint cat in d # Check if a dictionary has a given key; prints "True"# 如果直接使用 [] 來取值,需要先確定鍵的存在,否則會拋出異常print d[monkey] # KeyError: monkey not a key of d# 使用 get 函數則可以設置默認值print d.get(monkey, N/A) # Get an element with a default; prints "N/A"print d.get(fish, N/A) # Get an element with a default; prints "wet"d.keys() # 使用 keys 方法可以獲取所有的鍵

可以使用 for-in 來遍曆數組:

# 遍歷鍵for key in d:# 比前一種方式慢for k in dict.keys(): ...# 直接遍歷值for value in dict.itervalues(): ...# Python 2.x 中遍歷鍵值for key, value in d.iteritems():# Python 3.x 中遍歷鍵值for key, value in d.items():

其他序列類型

集合

# Same as {"a", "b","c"}normal_set = set(["a", "b","c"]) # Adding an element to normal set is finenormal_set.add("d") print("Normal Set")print(normal_set) # A frozen setfrozen_set = frozenset(["e", "f", "g"]) print("Frozen Set")print(frozen_set) # Uncommenting below line would cause error as# we are trying to add element to a frozen set# frozen_set.add("h")

函數

函數定義

Python 中的函數使用 def 關鍵字進行定義,譬如:

def sign(x): if x > 0: return positive elif x < 0: return negative else: return zerofor x in [-1, 0, 1]: print sign(x)# Prints "negative", "zero", "positive"

Python 支持運行時創建動態函數,也即是所謂的 lambda 函數:

def f(x): return x**2# 等價於g = lambda x: x**2

參數

Option Arguments: 不定參數

def example(a, b=None, *args, **kwargs): print a, b print args print kwargsexample(1, "var", 2, 3, word="hello")# 1 var# (2, 3)# {word: hello}a_tuple = (1, 2, 3, 4, 5)a_dict = {"1":1, "2":2, "3":3}example(1, "var", *a_tuple, **a_dict)# 1 var# (1, 2, 3, 4, 5)# {1: 1, 2: 2, 3: 3}

生成器

def simple_generator_function(): yield 1 yield 2 yield 3for value in simple_generator_function(): print(value)# 輸出結果# 1# 2# 3our_generator = simple_generator_function()next(our_generator)# 1next(our_generator)# 2next(our_generator)#3# 生成器典型的使用場景譬如無限數組的迭代def get_primes(number): while True: if is_prime(number): yield number number += 1

裝飾器

裝飾器是非常有用的設計模式:

# 簡單裝飾器from functools import wrapsdef decorator(func): @wraps(func) def wrapper(*args, **kwargs): print(wrap function) return func(*args, **kwargs) return wrapper@decoratordef example(*a, **kw): passexample.__name__ # attr of function preserve# example# Decorator # 帶輸入值的裝飾器from functools import wrapsdef decorator_with_argument(val): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): print "Val is {0}".format(val) return func(*args, **kwargs) return wrapper return decorator@decorator_with_argument(10)def example(): print "This is example function."example()# Val is 10# This is example function.# 等價於def example(): print "This is example function."example = decorator_with_argument(10)(example)example()# Val is 10# This is example function.

類與對象

類定義

Python 中對於類的定義也很直接:

class Greeter(object): # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False): if loud: print HELLO, %s! % self.name.upper() else: print Hello, %s % self.name g = Greeter(Fred) # Construct an instance of the Greeter classg.greet() # Call an instance method; prints "Hello, Fred"g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"# isinstance 方法用於判斷某個對象是否源自某個類ex = 10isinstance(ex,int)

Managed Attributes: 受控屬性

# property、setter、deleter 可以用於複寫點方法class Example(object): def __init__(self, value): self._val = value @property def val(self): return self._val @val.setter def val(self, value): if not isintance(value, int): raise TypeError("Expected int") self._val = value @val.deleter def val(self): del self._val @property def square3(self): return 2**3ex = Example(123)ex.val = "str"# Traceback (most recent call last):# File "", line 1, in# File "test.py", line 12, in val# raise TypeError("Expected int")# TypeError: Expected int

類方法與靜態方法

class example(object): @classmethod def clsmethod(cls): print "I am classmethod" @staticmethod def stmethod(): print "I am staticmethod" def instmethod(self): print "I am instancemethod"ex = example()ex.clsmethod()# I am classmethodex.stmethod()# I am staticmethodex.instmethod()# I am instancemethodexample.clsmethod()# I am classmethodexample.stmethod()# I am staticmethodexample.instmethod()# Traceback (most recent call last):# File "", line 1, in# TypeError: unbound method instmethod() ...

對象

實例化

屬性操作

Python 中對象的屬性不同於字典鍵,可以使用點運算符取值,直接使用 in 判斷會存在問題:

class A(object): @property def prop(self): return 3a = A()print "prop in a.__dict__ =", prop in a.__dict__print "hasattr(a, prop) =", hasattr(a, prop)print "a.prop =", a.prop# prop in a.__dict__ = False# hasattr(a, prop) = True# a.prop = 3

建議使用 hasattr、getattr、setattr 這種方式對於對象屬性進行操作:

class Example(object): def __init__(self): self.name = "ex" def printex(self): print "This is an example"# Check object has attributes# hasattr(obj, attr)ex = Example()hasattr(ex,"name")# Truehasattr(ex,"printex")# Truehasattr(ex,"print")# False# Get object attribute# getattr(obj, attr)getattr(ex,name)# ex# Set object attribute# setattr(obj, attr, value)setattr(ex,name,example)ex.name# example

異常與測試

異常處理

Context Manager - with

with 常用於打開或者關閉某些資源:

host = localhostport = 5566with Socket(host, port) as s: while True: conn, addr = s.accept() msg = conn.recv(1024) print msg conn.send(msg) conn.close()

單元測試

from __future__ import print_functionimport unittestdef fib(n): return 1 if n<=2 else fib(n-1)+fib(n-2)def setUpModule(): print("setup module")def tearDownModule(): print("teardown module")class TestFib(unittest.TestCase): def setUp(self): print("setUp") self.n = 10 def tearDown(self): print("tearDown") del self.n @classmethod def setUpClass(cls): print("setUpClass") @classmethod def tearDownClass(cls): print("tearDownClass") def test_fib_assert_equal(self): self.assertEqual(fib(self.n), 55) def test_fib_assert_true(self): self.assertTrue(fib(self.n) == 55)if __name__ == "__main__": unittest.main()

存儲

文件讀寫

路徑處理

Python 內置的 __file__ 關鍵字會指向當前文件的相對路徑,可以根據它來構造絕對路徑,或者索引其他文件:

# 獲取當前文件的相對目錄dir = os.path.dirname(__file__) # srcapp## once youre at the directory level you want, with the desired directory as the final path node:dirname1 = os.path.basename(dir) dirname2 = os.path.split(dir)[1] ## if you look at the documentation, this is exactly what os.path.basename does.# 獲取當前代碼文件的絕對路徑,abspath 會自動根據相對路徑與當前工作空間進行路徑補全os.path.abspath(os.path.dirname(__file__)) # D:WorkSpaceOWS oolui-tool-svnpythonsrcapp# 獲取當前文件的真實路徑os.path.dirname(os.path.realpath(__file__)) # D:WorkSpaceOWS oolui-tool-svnpythonsrcapp# 獲取當前執行路徑os.getcwd()

可以使用 listdir、walk、glob 模塊來進行文件枚舉與檢索:

# 僅列舉所有的文件from os import listdirfrom os.path import isfile, joinonlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]# 使用 walk 遞歸搜索from os import walkf = []for (dirpath, dirnames, filenames) in walk(mypath): f.extend(filenames) break# 使用 glob 進行複雜模式匹配import globprint(glob.glob("/home/adam/*.txt"))# [/home/adam/file1.txt, /home/adam/file2.txt, .... ]

簡單文件讀寫

# 可以根據文件是否存在選擇寫入模式mode = a if os.path.exists(writepath) else w# 使用 with 方法能夠自動處理異常with open("file.dat",mode) as f: f.write(...) ... # 操作完畢之後記得關閉文件 f.close()# 讀取文件內容message = f.read()

複雜格式文件

JSON

import json# Writing JSON datawith open(data.json, w) as f: json.dump(data, f)# Reading data backwith open(data.json, r) as f: data = json.load(f)

XML

我們可以使用 lxml 來解析與處理 XML 文件,本部分即對其常用操作進行介紹。lxml 支持從字元串或者文件中創建 Element 對象:

from lxml import etree# 可以從字元串開始構造xml = <a xmlns="test"><b xmlns="test"/></a>root = etree.fromstring(xml)etree.tostring(root)# b<a xmlns="test"><b xmlns="test"/></a># 也可以從某個文件開始構造tree = etree.parse("doc/test.xml")# 或者指定某個 baseURLroot = etree.fromstring(xml, base_url="http://where.it/is/from.xml")

其提供了迭代器以對所有元素進行遍歷:

# 遍歷所有的節點for tag in tree.iter(): if not len(tag): print tag.keys() # 獲取所有自定義屬性 print (tag.tag, tag.text) # text 即文本子元素值# 獲取 XPathfor e in root.iter(): print tree.getpath(e)

lxml 支持以 XPath 查找元素,不過需要注意的是,XPath 查找的結果是數組,並且在包含命名空間的情況下,需要指定命名空間:

root.xpath(//page/text/text(),ns={prefix:url})# 可以使用 getparent 遞歸查找父元素el.getparent()

lxml 提供了 insert、append 等方法進行元素操作:

# append 方法默認追加到尾部st = etree.Element("state", name="New Mexico")co = etree.Element("county", name="Socorro")st.append(co)# insert 方法可以指定位置node.insert(0, newKid)

Excel

可以使用 [xlrd]() 來讀取 Excel 文件,使用 xlsxwriter 來寫入與操作 Excel 文件。

# 讀取某個 Cell 的原始值sh.cell(rx, col).value# 創建新的文件workbook = xlsxwriter.Workbook(outputFile)worksheet = workbook.add_worksheet()# 設置從第 0 行開始寫入row = 0# 遍歷二維數組,並且將其寫入到 Excel 中for rowData in array: for col, data in enumerate(rowData): worksheet.write(row, col, data) row = row + 1workbook.close()

文件系統

對於高級的文件操作,我們可以使用 Python 內置的 shutil

# 遞歸刪除 appName 下面的所有的文件夾shutil.rmtree(appName)

網路交互

Requests

Requests 是優雅而易用的 Python 網路請求庫:

import requestsr = requests.get(https://api.github.com/events)r = requests.get(https://api.github.com/user, auth=(user, pass))r.status_code# 200r.headers[content-type]# application/json; charset=utf8r.encoding# utf-8r.text# u{"type":"User"...r.json()# {uprivate_gists: 419, utotal_private_repos: 77, ...}r = requests.put(http://httpbin.org/put, data = {key:value})r = requests.delete(http://httpbin.org/delete)r = requests.head(http://httpbin.org/get)r = requests.options(http://httpbin.org/get)

數據存儲

MySQL

import pymysql.cursors# Connect to the databaseconnection = pymysql.connect(host=localhost, user=user, password=passwd, db=db, charset=utf8mb4, cursorclass=pymysql.cursors.DictCursor)try: with connection.cursor() as cursor: # Create a new record sql = "INSERT INTO `users` (`email`, `password`) VALUES (%s, %s)" cursor.execute(sql, (webmaster@python.org, very-secret)) # connection is not autocommit by default. So you must commit to save # your changes. connection.commit() with connection.cursor() as cursor: # Read a single record sql = "SELECT `id`, `password` FROM `users` WHERE `email`=%s" cursor.execute(sql, (webmaster@python.org,)) result = cursor.fetchone() print(result)finally: connection.close()

推薦閱讀:

Python出現ValueError: need more than 1 value to unpack 的原因是什麼?
[Python]因果檢驗工具
2017年,Web 後端出現了哪些新的思想和技術?
從數據角度探究《前任3》為什麼這麼火爆
一份Python爬蟲電子書

TAG:Python |