大數據告訴你:為啥近5年來Python如此火爆?

我們最近討論過,那些被世界銀行定義為高收入水平的發達國家,在選擇使用什麼類型的技術方面,和世界上的其他地方往往有著較大的區別。這類區別中,差異最大的例子之一,就是 Python 編程語言。如果只統計高收入國家的數據,這幾年間 Python 的增長量遠超過諸如 StackOverflow 趨勢工具中顯示的全球軟體開發工具的增長情況。

今天,我們將深入挖掘一下近五年里 Python 編程語言爆炸性增長的細節數據,主要以高收入國家用戶產生的 StackOverflow 流量為指標。當然,我們很難精確定義像「增長速度最快」這樣的說法,但我們還是找到了 Python 是近年來增長速度最快的主要編程語言的決定性證據。

除非特別表明,本文以下討論的所有數據均僅統計高收入國家範圍內;這些流量主要來自比如美國、英國、德國、加拿大等發達國家,佔了 StackOverflow 總訪問量的約 64%;其他一些國家,比如印度、巴西、俄羅斯和中國當然也為全球軟體開發生態系統做出了巨大的貢獻,限於篇幅本文對此不再詳細討論,但我們也能看到, Python 在這些國家中也表現出增長的趨勢。

這裡要先強調一點,某種語言的用戶數量並不能用于衡量某個語言的質量:我們只是單純描述開發者使用編程語言的情況,並沒有對此做出任何評判。

高收入國家中 Python 語言的增長情況

從 StackOverflow 趨勢工具上,我們能看到近幾年 Python 的增長勢頭一直非常迅猛。但如果光考慮高收入國家的情況又如何呢?我們的統計口徑是每個問題的閱讀量,而不是回答數量——雖然二者結果類似,但閱讀量的每月干擾較小,特別對較小的標籤更是如此。

對於 StackOverflow 問題的閱讀量,我們能獲得的統計數據是從2011年末至今。在此範圍內,我們將 Python 和其他5中主要的編程語言進行對比。(注意:這個統計範圍比趨勢工具分析的範圍要小,趨勢工具的數據是從2008年至今。)這些編程語言是目前 StackOverflow 上高收入國家的用戶訪問量最多的10大標籤中的6個 —— 其他4個沒有列入對比的是 CSS 、 HTML、Android、和 JQuery。

從數據上來看,2017年6月,Python 首次超過 Javascript,成為 StackOverflow 上閱讀量最高的標籤。其中, Python 在美國和英國是國內閱讀量第一,在其他幾個高收入國家則略微小於 Java 或者 Javascript ,屈居亞軍。這可是相當引人注目的成就,要知道在2012年,它比其他5個編程語言都低,而短短的幾年內就增加了2.5倍。當然這部分原因是由於 Java 每季度的訪問變化規律:由於在大學課程中 Java 的佔比相當大,所以 Java 的閱讀量在每個學期期中和期末階段會迎來一個高峰,而到了暑假期間則相對回落。在今年底 Java 是否有可能再度反超 Python 呢?我們用了個趨勢分析模型「STL」,將季度性的變化和總體的增長趨勢進行整合,並對接下來兩年的增長趨勢進行了預測:

根據這個模型,Python 有可能繼續保持領先,也有可能在今年秋季被 Java 暫時超過(這些都在模型預期的變動範圍內),但很明顯,在2018年 Python 將毫無疑問成為閱讀量排行第一的標籤。 STL 模型還推測, Java 和 Javascript 將會繼續保持在比較相似的水平,正如它們前兩年中的趨勢一樣。

總體上看哪個標籤增長的最快?

上述數據都僅限在訪問最多的6大編程語言中。但在目前各種技術百花齊放的時候,到底誰才是當下在高收入國家裡增長最快的技術呢?

我們決定以2016年度和2017年度的閱讀量增長率為指標,分析了各大編程語言( Java 和 Python 之類)以及各種平台(比如 iOS、Android、Windows 和 Linux)的數據,不過沒有包括類似 Angular 這樣的框架或者 Tensor Flow 這樣的工具(雖然它們很多也展現出了不俗的增長勢頭,也許我們之後會另文討論)。

由於在不同體量和增長數量上的差異,單純的增長率數字是不具有可比性的。因此,我們使用了一張平均差圖來對比每個標籤的總量和增長率。

如圖所示,擁有 27% 年增長率的 Python 可謂獨佔鰲頭:基數大的標籤中增長最快,增長快的標籤中總量最大。與其增長率類似,總量排在第二大的是 R 語言。在高收入國家,大部分總量較大的標籤的流量都保持相對穩定,除了 Android 、iOS 和 PHP 有些微的減少。之前我們還討論過的 Objective-C 、 Perl 和 Ruby 都有比較明顯的縮減。各種函數式編程語言中, Scala 是總量最大增長情況也最好的,而 F# 和 Clojure 則總量很低,又呈減少趨勢,只有 Haskell 保持居中穩定態勢。

不過上圖中有一個特殊的成員無法顯示,那就是 Typescript 。它的相關問題閱讀量在去年增長了 142% 以至於沒法擺在圖上。同時,你還能看出有許多相對較小的語言的增長速度也和 Python 持平或更高(比如 R、 Go 和 Rust),而 Swift 和 Scala 也顯示出了令人印象深刻的增長勢頭。那麼他們的總閱讀量情況和 Python 相比如何呢?

類似 R 和 Swift 這些語言的增長速度確實頗為可觀, TypeScript 更是在這麼短的時間內翻了一番多。這些較小的編程語言的發展,幾乎都是從完全默默無聞,到如今在軟體生態系統中佔有了不可忽視的份額。但根據這張圖表我們可以看出,對於總量相對較小的語言,要更快地擴張還是相對容易的。

請注意我們並不是把這些語言和 Python 進行對比,只是嘗試解釋這些語言的增長速度和總量的關係——這些語言都還有非常廣闊的前景。但在目前的統計數據中, Python 確實是獨樹一幟:它既是這些語言中總閱讀量最大的,也是增速最快的之一。(事實上,它的增速還在加快!從2013年以來,每年的平均增長率都在提高。)

放眼全球

至此,我們已經分析了高收入國家中 Python 語言的相關趨勢。在全球的其他國家,比如印度、巴西、俄羅斯和中國, Python 是不是也有著類似的增長情況呢?

答案是肯定的。

在其他國家和地區, Python 依舊是增長最快的主要編程語言,它原先也還是保持著較低的水平,比高收入國家遲了兩年(2014年)才開始高速增長。事實上,在非高收入國家的用戶中, Python 相關標籤的閱讀量年增長率甚至比高收入國家的還稍微高一點點。雖然上圖沒有顯示,但另一門使用量和GDP呈正相關關係的編程語言: R 語言的訪問量在這些國家裡也呈增長趨勢。

本文中,關於問題標籤閱讀量增減情況(而不是絕對的排行)的許多結論都是基於高收入國家的數據,但在其他國家和地區也同樣成立。在這兩種不同區域間的增長率數據的斯皮爾曼相關係數達 0.979。在部分情況下——比如在 Python 語言的增長——你可以看到存在某種像是「延遲」的現象:當一種技術在高收入國家中廣泛普及後一兩年,才逐漸擴展到全球範圍。

下一步研究方向

我們寫這篇文可不是為了引戰。某種語言的用戶量並不能代表它的質量,當然也不能告訴你對於某種特定情況用哪種語言來解決更好。帶著這樣的觀點,我們相信,通過類似研究,我們可以了解到當前的軟體開發生態是由哪些語言組成的,以及據此推測整個產業將會往什麼方向改變。

原文來源:大數據告訴你:為啥近5年來Python如此火爆?

本文譯者:歐剃

本文首發於微信訂閱號優達學城Udacity(id:youdaxue),關注訂閱號,回復關鍵字「學習資料」,獲取來自矽谷的包括「機器學習」、「深度學習」、「數據分析」和「前端開發」在內的獨家學習資料。優達學城 (Udacity) - 傳授矽谷的名企官方課程

歡迎大家踴躍投稿~可以通過私信聯繫優達菌~


推薦閱讀:

總是糾結於編程語言標準怎麼辦?
為什麼微軟的編程語言C# F#的編譯器要那麼多黑科技?
面向對象、面向服務、面向組件三種編程模式有什麼區別?分別適用於哪些領域的開發?
為什麼 PHP 又流行起來了?
函數 為什麼要Currying化,currying化有什麼優點?

TAG:Python | PHP | 编程语言 |