英文數學教材中一些詞的用法解釋
to identify
"To identify two mathematical objects"意味著"認為兩個數學元素是相同的", 這一用法來源於"identify A with B".
例1
We consider the geometry of the plane, and of three-dimensional space , we regard as a subset of , by identifying each point of the plane with the point of 3-space. We thus identifywith the -plane in .
例2
We consider the unit circle, which is parametrized by radian measure, is sometimes described as "the interval with the two ends and identified".
例3
Let be a group, , be the set of cosets of in , is the group action. If the subgroup, and we identify the element with the set , then the action by left multiplication of on left cosets of the identity subgroup (i.e.,) is the same as the action by left multiplication of on itself (i.e. left regular action).
unique
"The unique element having a property "是指有性質 的唯一 (only) 元素.
例
is the unique real number such that , so that equation has a unique solution in .
up to ...
直觀上, "up to" 的作用是對一個完整的陳述作一些修改, 使其允許一些"誤差"的存在, 這裡的"誤差"內容即為"up to"後面的內容. 表述" up to "通常可以理解為"在不考慮 的情況下 成立".
例1
If , then the equation has a real-number solution which is unique up to sign. (If are both solutions to the equation, then we can assert ).
例2
If is a continuous function on the real line, then there is a function whose derivative is , then is unique up to an additive constant.
例3
The cycle decomposition of each permutation is the unique way of expressing a permutation as a product of disjoint cycles up to rearranging its cycles and cyclically permuting the numbers within each cycle.
例4
A triangle is determined up to congruence "by side-angle-side", i.e., by the lengths of two sides and the value of the angle between them.
知乎相關問題: 數學用語「up to」該如何翻譯?
by choice of ...
"by choice of"通常是一個提醒讀者回顧先前的假定的標誌.
例1
先作假定: "假定多項式有正根". 在後文中出現命題, 並且有" is true by choice of". 這意味著, 成立可能因為"是多項式的根", 也可能因為"是正數", 也可能因為"是多項式的正根". 也就是說導致出現"by choice of"的可能原因很多, 需要讀者思考.
例2
Lemma 1
Let be a set. There exists an ordinal which cannot be put in bijective correspondence with any subset of .
Theorem 1Assuming the axioms of Zermelo–Fraenkel set theory (but not the Axiom of Choice), the following statements are equivalent:(i) The Well-ordering Principle: Every set can be well-ordered. (Equivalently: every set can be put in bijective correspondence with an ordinal.)
(ii) Comparability of Cardinalities: Given any two sets and , one of these sets can be put in bijective correspondence with a subset of the other. (Loosely: the class of cardinalities is totally ordered.)
Proof of Theorem 1(ii)(i)Assuming (ii), let be any set and an ordinal with the property stated in Lemma 1. By (ii), there is either a bijection between and a subset of , or between and a subset of . By choice of, the latter case cannot occur, so there is a bijection between and a subset . Since is well-ordered, so is every subset, and the well-ordering of induces a well-ordering of , proving (i).
(例2中對的假定是通過前文中的引理表述的.)
without loss of generality
"without loss of generality"常常翻譯為"不失一般性地", "不妨"等, 部分書中簡記為"w.l.o.g". 在數學證明中, 我們說"without loss of generality"時, 通常假定了某種條件成立. 如果我們能從成立得到結果, 然後很容易推廣到整個條件, 就證明了整個命題. 注意, "能夠將推廣到整個條件"是我們假設的前提, 如果不能推廣, 就不能這麼假設.
例1 (利用證明結構的對稱性)
我們能不失一般性地直接證明""的情況, 然後說明類似可以推證""的情況. 這裡的假設條件就是"", 而由於兩種情況具有相同的證明結構, 這種推廣的過程通常被認為是顯然的 (平凡的), 所以省略了.
例2
在證明閉區間 上的函數的某一性質時, 我們能夠不失一般性地令, 並且證明的該性質在上成立, 再說明可以推廣到閉區間 . 這裡的假設條件就是"". 我們令, 若在上的性質和在上的性質相一致, 我們就能將在上的性質推廣到在 上的性質, 這樣才能夠利用"不失一般性地".
注意, 從推廣的過程的平凡程度是相對的, 可能對於讀者是很不平凡的, 但對於作者就是平凡的. 有時候, 作者會明確指出為什麼能夠推廣.
知乎相關問題:
數學證明中,「一般地」、「不失一般性」是什麼意思,什麼時候使用?
經常出現在數學證明中的「不妨設」根據是什麼?如何培養這種「不妨設」,「假設」的能力?
well-defined
"well-defined"通常翻譯為"良定義的". 若一個已經定義了的實體確實能夠被定義決定, 而不隨著定義中隱含的選擇變化, 則稱為良定義的.
例1
設是集合上的等價關係, 是中滿足性質的等價類. 對任意, 若成立蘊涵成立, 則稱性質為良定義的.
例2
設是集合上的等價關係, . 對任意, 若, 有, 則稱映射為良定義的. 換言之, 若映射的像與等價類代表元的選取無關, 則稱為良定義的.
例3
設是代數系統, 是二元運算, 是集合上的等價關係, 是商集. 在商集上定義運算滿足對任意, 都有. 若對任意滿足的和滿足的, 都有, 則稱運算為良定義的. 換言之, 若運算結果與等價類代表元的選取無關, 則稱為良定義的.
例4
設為群, , . 若對任意和, 都有, 則稱左陪集乘法是良定義的. 換言之, 若左陪集乘積與左陪集代表元的選取無關, 則稱為良定義的.
例5
設為群, , 是上的等價關係, 群同態. 若對任意滿足的, 有, 則稱同態為良定義的. 換言之, 若同態的像與陪集代表元的選取無關, 則稱為良定義的.
知乎相關問題: 數學中什麼叫well defined?
推薦閱讀:
※1+1=2是公理還是定理?
※複變函數積分的物理意義?
※n維空間任意兩向量垂直的概率?
※點集拓撲為什麼要這樣定義?具有幾何意義嗎?
※原來學數學也是可以靠"背"的!竟然現在才知道...