英文數學教材中一些詞的用法解釋

在英文的數學教材中, 常常出現一些在數學書寫(mathematical writing)中有特殊含義的用法, 本文意在對這些辭彙作出一些簡單解釋說明並給出一些例子.

to identify

"To identify two mathematical objects"意味著"認為兩個數學元素是相同的", 這一用法來源於"identify A with B".

例1

We consider the geometry of the plane, mathbb{R}^2={, (x,y) ,|, x,y in mathbb{R} ,} and of three-dimensional space mathbb{R}^3={, (x,y,z) ,|, x,y,z in mathbb{R} ,} , we regard mathbb{R}^2 as a subset of mathbb{R}^3, by identifying each point (x,y) of the plane with the point (x,y,0) of 3-space. We thus identifymathbb{R}^2with the (x,y)-plane {, (x,y,z) ,| , z=0 ,} in mathbb{R}^3.

例2

We consider the unit circle, which is parametrized by radian measure, is sometimes described as "the interval [0,2pi] with the two ends 0 and 2piidentified".

例3

Let (G,cdot,1) be a group, H leq G, S={aH}_{a in G} be the set of cosets of H in G, egin{align}varphi colon G 	imes {aH}_{a in G} & 	o {aH}_{a in G}\g(aH) &mapsto gaHend{align} is the group action. If the subgroupH={1}, and we identify the element g with the set {g}, then the action by left multiplication of G on left cosets of the identity subgroup {1} (i.e.,varphi) is the same as the action by left multiplication of G on itself (i.e. left regular action).

unique

"The unique element having a property P "是指有性質 P 的唯一 (only) 元素.

2 is the unique real number x such that x^3 = 8, so that equation has a unique solution in mathbb{R}.

up to ...

直觀上, "up to" 的作用是對一個完整的陳述作一些修改, 使其允許一些"誤差"的存在, 這裡的"誤差"內容即為"up to"後面的內容. 表述"P(x) up to S"通常可以理解為"在不考慮 S 的情況下 P(x) 成立".

例1

If a in mathbb{R}^+, then the equation x^2=a has a real-number solution which is unique up to sign. (If x_1,x_2 are both solutions to the equation, then we can assert x_1=pm x_2).

例2

If f(x) is a continuous function on the real line, then there is a function g whose derivative is f, then g is unique up to an additive constant.

例3

The cycle decomposition of each permutation is the unique way of expressing a permutation as a product of disjoint cycles up to rearranging its cycles and cyclically permuting the numbers within each cycle.

例4

A triangle is determined up to congruence "by side-angle-side", i.e., by the lengths of two sides and the value of the angle between them.

知乎相關問題: 數學用語「up to」該如何翻譯?

by choice of ...

"by choice of"通常是一個提醒讀者回顧先前的假定的標誌.

例1

先作假定: "假定多項式 f(x)有正根r". 在後文中出現命題P, 並且有"P is true by choice ofr". 這意味著, P成立可能因為"r是多項式 f(x)的根", 也可能因為"r是正數", 也可能因為"r是多項式 f(x)的正根". 也就是說導致出現"by choice of"的可能原因很多, 需要讀者思考.

例2

Lemma 1

Let X be a set. There exists an ordinal alpha which cannot be put in bijective correspondence with any subset of X.

Theorem 1

Assuming the axioms of Zermelo–Fraenkel set theory (but not the Axiom of Choice), the following statements are equivalent:

(i) The Well-ordering Principle: Every set can be well-ordered. (Equivalently: every set can be put in bijective correspondence with an ordinal.)

(ii) Comparability of Cardinalities: Given any two sets X and Y, one of these sets can be put in bijective correspondence with a subset of the other. (Loosely: the class of cardinalities is totally ordered.)

Proof of Theorem 1

(ii)Rightarrow (i)

Assuming (ii), let X be any set and alpha an ordinal with the property stated in Lemma 1. By (ii), there is either a bijection between X and a subset of alpha, or between alpha and a subset of X. By choice ofalpha, the latter case cannot occur, so there is a bijection between X and a subset S subseteq alpha. Since alpha is well-ordered, so is every subset, and the well-ordering of S induces a well-ordering of X, proving (i).

(例2中對alpha的假定是通過前文中的引理表述的.)

without loss of generality

"without loss of generality"常常翻譯為"不失一般性地", "不妨"等, 部分書中簡記為"w.l.o.g". 在數學證明中, 我們說"without loss of generality"時, 通常假定了某種條件X成立. 如果我們能從X成立得到結果, 然後X很容易推廣到整個條件, 就證明了整個命題. 注意, "能夠將X推廣到整個條件"是我們假設的前提, 如果不能推廣, 就不能這麼假設.

例1 (利用證明結構的對稱性)

我們能不失一般性地直接證明"x>y"的情況, 然後說明類似可以推證"x<y"的情況. 這裡的假設條件X就是"x>y", 而由於兩種情況具有相同的證明結構, 這種推廣的過程通常被認為是顯然的 (平凡的), 所以省略了.

例2

在證明閉區間 [a,b] 上的函數f的某一性質時, 我們能夠不失一般性地[a,b]=[0,1], 並且證明 f的該性質在[0,1]上成立, 再說明可以推廣到閉區間 [a,b]. 這裡的假設條件X就是"[a,b]=[0,1]". 我們令g(x)=f(a+(b-a)x), 若g[0,1]上的性質和f[a,b]上的性質相一致, 我們就能將g[0,1]上的性質推廣到 f[a,b]上的性質, 這樣才能夠利用"不失一般性地".

注意, 從X推廣的過程的平凡程度是相對的, 可能對於讀者是很不平凡的, 但對於作者就是平凡的. 有時候, 作者會明確指出為什麼能夠推廣.

知乎相關問題:

數學證明中,「一般地」、「不失一般性」是什麼意思,什麼時候使用?

經常出現在數學證明中的「不妨設」根據是什麼?如何培養這種「不妨設」,「假設」的能力?

well-defined

"well-defined"通常翻譯為"良定義的". 若一個已經定義了的實體確實能夠被定義決定, 而不隨著定義中隱含的選擇變化, 則稱為良定義的.

例1

sim是集合X上的等價關係, EX中滿足性質P的等價類. 對任意x,y in E, 若P(x)成立蘊涵P(y)成立, 則稱性質P良定義的.

例2

sim是集合X上的等價關係, f colon X 	o Y. 對任意a,b in X, 若a sim b, 有f(a)=f(b), 則稱映射f良定義的. 換言之, 若映射的像與等價類代表元a,b的選取無關, 則稱為良定義的.

例3

(S,star)是代數系統, star是二元運算, sim是集合S上的等價關係, S/ sim是商集. 在商集上定義運算[star]滿足對任意a,b in S, 都有[a] [star] [b]=[a star b]. 若對任意滿足a sim cc in S和滿足b sim dd in S, 都有[a star b]=[c star d], 則稱運算[star]良定義的. 換言之, 若運算結果與等價類代表元a,b的選取無關, 則稱為良定義的.

例4

(G,cdot)為群, H leq G, a,b,a^{prime},b^{prime} in G. 若對任意a,a^{prime} in aHb,b^{prime} in bH, 都有(ab)H=(a^{prime}b^{prime})H, 則稱左陪集乘法是良定義的. 換言之, 若左陪集乘積與左陪集代表元的選取無關, 則稱為良定義的.

例5

(G,cdot)為群, N unlhd G, NG/N上的等價關係, 群同態varphi colon G/N 	o H. 若對任意滿足aN=bNa,b in G, 有varphi(aN)=varphi(bN), 則稱同態varphi良定義的. 換言之, 若同態的像與陪集代表元a,b的選取無關, 則稱為良定義的.

知乎相關問題: 數學中什麼叫well defined?


推薦閱讀:

1+1=2是公理還是定理?
複變函數積分的物理意義?
n維空間任意兩向量垂直的概率?
點集拓撲為什麼要這樣定義?具有幾何意義嗎?
原來學數學也是可以靠&quot;背&quot;的!竟然現在才知道...

TAG:数学 | 数学教育 |