Restriction Theorem 1

1.

the most natural problem in harmonic analysis may be:

investigate for what pair (p,q) we have :

 L^p(R^n)longrightarrow L^q(R^n)

hat f(x)=int_{R^n}e^{-2pi ixxi}f(xi)dxi

is strong p-q bounded.

obvious we have the paserval identity: ||hat f||_{2}=||f||_2 ,and we have ||hat f||_{infty}leq||f||_{1} .

so by the Riesz-Thorin inteplotation theorem we have the Hausdorff-Young inequality:

forall 1leq pleq 2,frac{1}{p}+frac{1}{q}=1 we have:

||hat f||_{q}leq ||f||_{p} .

now let talk about the rescaling trick:

consider the transform: f(x)longrightarrow f(frac{x}{lambda})=f_{lambda}(x) .we know if the inequality is right then it is necessary to have the same growth for the RHS and LHS.

this argument will derive: frac{n}{p}=n-frac{n}{q} .

in fact ||f_{lambda}(x)||_{p}=lambda^{frac{n}{p}}||f(x)||_{p}

by the variable substitute formula: hat f_{lambda}(x)=int_{R^n}e^{-2pi ixxi}f(frac{xi}{lambda})dxi=lambda^nhat f(lambda x)

so ||hat f_{lambda}(x)||_{q}=lambda^{n-frac{n}{q}}||hat f(x)||_{q}

and by the scaling invariance trick we know the pair (p,q) should live on the line frac{1}{p}+frac{1}{q}=1 ,and by test with the guessian function g(x)=e^{-x^2} we know the right pair should be 1leq pleq 2 .this end the problem with R^n .

2.

now replace R^n by a bounded open set K .when the fourior transform restriction on K is bounded p-q operator?

i.e. L^p(R^n)longrightarrow L^q(R^n)

 flongrightarrow hat f|_{K} .

hat f|_{K}=int chi_{K}e^{2pi i<x,xi>}f(xi)dxi .

on a bounded set  K ,we always have:if qgeq r , ||f||_{L^p(K)}geq ||f||_{L^r(K)} .

and associate with hausdorff-young inequality we have:

||hat f|_K||_{r}leq ||hat f||_qleq ||f||_p

and this area is the exact area(rescaling trick and test with gaussian function),so end of the story.(but why?)

3.

Now we begin to deal with the really interesting case: K is not a open set but a sub manifold like the unit sphere S^{n-1} .

||hat f||_{L^q(S^{n-1})}leq ||f||_{L^p(R^{n})} .

S^{n-1} equip with the usual surface measure sigma .

but the inequality is not always meaningful.

case: p=2 , hat fin L^2 ,in general can not restrict to a measure zero set due to the loss of regularity.

case: p=1,hat f continuous,meaningful to restrict to S^{n-1} .

||hat f||_{L^{infty}(S^{n-1})}leq ||f||_{L^1(R^n)},forall 1leq pleq infty.

Duality:we use the duality argument to transform the "restriction theorem" to "extension theorem".

T:flongrightarrow hat f .

T:flongrightarrow hat f .

||f||=sup_{||f||_p=1}||hat f||_q=sup_{||f||_p=1}sup_{||g||_{q}=1}|int_{R^n}hat fgdsigma|=sup_{||g||_{q}=1}sup_{||f||_p=1}|int_{R^n}hat fgdsigma|=sup_{||g||_{q}=1}||hat{gdsigma}||_{p} .

4.

we use R_s(p	o q) to state the estimate ||hat f||_{L^q(S)}leq ||f||_{L^p(R^n)} . S=S^{n-1} .

and by rescaling argument we have natural condition: p<frac{2n}{n-1} , pgeq frac{n+1}{(n-1)q} .the restriction conjecture just say this necessary condition is also enough.

Now we state the Tomas-Stein restriction theorem:

1leq pleq frac{2n+1}{n+3}. R_s(p	o 2) holds.

this is the endpoint estimate in dimension 2 case,so by Meceztaze interpolation theorem this lead to the whole restriction theorem in dimension 2.

the first argument is come from the so called TT^* trick that is find by fefferman and stein in 1970.

T bdd p	o 2 Longleftrightarrow TT^*   bdd   p	o p .

in fact:

||T||=sup_{||f||_p=1}||Tf||_2=sup_{||f||_p=1}sup_{||g||_2=1}|int (Tf)g|=sup_{||f||_p=1}sup_{||g||_2=1}|int f(Tg)|=sup_{||g||_2=1}||Tg||_{p}=||T^*|| .

int|e^{2pi ixxi}f(xi)|^2 dw(xi)leq C||f||_p^2

<hat f,hat fw(xi)>leq c||f||_p^2

<hat f,hat{f*hat{w(xi)}}> leq ||f||_p^2

<f,f*hat{w(xi)}>leq ||f||_p^2

<f,f*hat{w(xi)}>leq ||f||_p||f*hat{w(xi)}||_{p}

this can be derived from HLS inequality:

||f*hat{w(xi)}||_{p}leq ||f||_p .


推薦閱讀:

集合論中的自反性證明?
請問代數解析是什麼樣的領域?在幾何學方面有什麼應用嘛?
未來人工智慧能解決數學難題嗎?如黎曼猜想,霍奇猜想之類的?
自相關函數怎麼理解,為什麼定義中有共軛,卷積呢。定義中的卷積,共軛有什麼意義?尤其是在信號處理方面
為什麼傳遞函數分母中s的階數n必不小於分子中s的階數m?

TAG:数学 | 调和分析 | 偏微分方程 |