Action Reconition CVPR 2017
02-09
Action Recognition in CVPR 2017
CVPR2017的paper list
本文總結了CVPR2017中關於行為識別的一些文章,action detection的文章並未總結,附上pdf鏈接~
很多文章代碼都沒有放出來,找到了會更新的哦~
Analyzing Humans in Images
- Transition Forests: Learning Discriminative Temporal Transitions for Action Recognition and Detection
- Scene Flow to Action Map: A New Representation for RGB-D Based Action Recognition With Convolutional Neural Networks
- Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition
- 該文章沒有上deep learning,作者的理由是,我處理的不是完整的圖片而是骨架,骨架信息並不像圖片,有成千上萬個像素,只有上十個關節信息,因此不需要端到端的複雜模型,非參數模型也能搞定
- Procedural Generation of Videos to Train Deep Action Recognition Networks
- Learning and Refining of Privileged Information-Based RNNs for Action Recognition From Depth Sequences
- Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset(強推,HMDB51上的準確率一下子提升到了80%多,上了64塊GPU,DeepMind做出來的,感覺任何事情谷歌插一腳,大家就沒法玩了orz)
- 文中有個圖比較直觀的反應了幾種網路的區別,其中K表示一個視頻中的總幀數,N代表幾個相鄰幀
- Asynchronous Temporal Fields for Action Recognition
- AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks for Human Action Recognition in Videos
- Modeling Temporal Dynamics and Spatial Configurations of Actions Using Two-Stream Recurrent Neural Networks
- Deep Sequential Context Networks for Action Prediction
Video Analytics
- Zero-Shot Action Recognition With Error-Correcting Output Codes
- Spatiotemporal Pyramid Network for Video Action Recognition
- Spatio-Temporal Vector of Locally Max Pooled Features for Action Recognition in Videos
- UntrimmedNets for Weakly Supervised Action Recognition and Detection
- Spatiotemporal Multiplier Networks for Video Action Recognition
- ActionVLAD: Learning Spatio-Temporal Aggregation for Action Classification
Spotlight 1-2B Analyzing Humans 1
- Deep Learning on Lie Groups for Skeleton-Based Action Recognition
- 提出了一個新的神經網路LieNet,學習基於李群的3D骨架特徵來進行動作識別
- 1.將李群結構和神經網路結合起來,相比於傳統的神經網路結構,網路結構為了適應李群做了相應的調整,添加了RotMap Layer、RotPooling Layer、. LogMap Layer
- 2.在這個結構中,為了使用反向傳播演算法,隨機梯度下降法也做了相應探索(李群比較難....沒有細讀)
3D Computer Vision
- Global Context-Aware Attention LSTM Networks for 3D Action Recognition
Applications
- Modeling Sub-Event Dynamics in First-Person Action Recognition
others
- Multi-Task Clustering of Human Actions by Sharing Information
- Binary Coding for Partial Action Analysis With Limited Observation Ratios
推薦閱讀:
※機器視覺新手應該如何學習?
※機器人能通過觀察環境明白自己在哪嗎?機器人定位的方式對解決「人類路痴」問題有幫助嗎?
※華中科技大學圖像所怎麼樣?
※對話CVPR2016:目標檢測新進展
※CNN神經網路內部知識表達的「黑」與「白」
TAG:CVPR | 计算机视觉 | 深度学习DeepLearning |